Answer:
liquid, solid, and gas. A heating curve shows how the temperature changes as a substance is heated up at a constant rate.
Explanation:
Answer:
Option (D) : The object slows down.
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
When a small cart collide with a large mass then during collision they must be in contact with each other for some interval of time
During this contact interval we can say they will exert normal force on each other
This normal force is always equal and opposite on two balls which means this force will follow Newton's III law
It will be same in magnitude but opposite in the direction
So here correct answer would be
<u><em>They both experience the same magnitude of the collision force.</em></u>
Answer:
The velocity is 
Explanation:
From the question we are told that
The initial speed is 
The cross -sectional area of the first pipe is 
The cross -sectional area of the second pipe is 
Generally from continuity equation we have that

So

=> 
=> 