from the question you can see that some detail is missing, using search engines i was able to get a similar question on "https://www.slader.com/discussion/question/a-student-throws-a-water-balloon-vertically-downward-from-the-top-of-a-building-the-balloon-leaves-t/"
here is the question : A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's hand with a speed of 60.0m/s. Air resistance may be ignored,so the water balloon is in free fall after it leaves the throwers hand. a) What is its speed after falling for 2.00s? b) How far does it fall in 2.00s? c) What is the magnitude of its velocity after falling 10.0m?
Answer:
(A) 26 m/s
(B) 32.4 m
(C) v = 15.4 m/s
Explanation:
initial speed (u) = 6.4 m/s
acceleration due to gravity (a) = 9.9 m/s^[2}
time (t) = 2 s
(A) What is its speed after falling for 2.00s?
from the equation of motion v = u + at we can get the speed
v = 6.4 + (9.8 x 2) = 26 m/s
(B) How far does it fall in 2.00s?
from the equation of motion we can get the distance covered
s = (6.4 x 2) + (0.5 x 9.8 x 2 x 2)
s = 12.8 + 19.6 = 32.4 m
c) What is the magnitude of its velocity after falling 10.0m?
from the equation of motion below we can get the velocity
v = 15.4 m/s
Answer:
In a straight line
Explanation:
Why, because of the power of inerta
Answer:
a) F = 527.65 N, Force applied is upwards.
b)F = - 527.65 N, where, negative sign depicts Force is applied downwards.
Explanation:
Data provided:
Weight of the firefighter = 756 N
Mass of the firefighter = 756/9.8 = 77.14 Kg
Acceleration, a = 2.96 m/s²
a) In the absence of the pole the firefighter would have been moving down with an acceleration of 9.8 m/s (i.e the acceleration due to the gravity), but due to the presence of the pole the acceleration of the firefighter has been reduced. thus, a force is applied by the pole on the firefighter to reduce the acceleration.
therefore, we have
F = ma(net) = 77.14 × (9.8-2.96) = 527.65 N, Force applied is upwards.
B) According to the Newton's third law, the force will be equal and opposite to the force in the part a)
thus, we have
F = - 527.65 N
Answer: 11369.46 m/s
Explanation:
We have the following data:
is the mass of the bowling ball
is the velocity of the bowling ball
is the mass of the ping-pong ball
is the velocity of the ping-pong ball
Now, the momentum of the bowling ball is:
(1)
(2)
And the momentum of the ping-pong ball is:
(3)
If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:
(4)
(5)
Isolating :
(6)
(7)
Finally:
Velocity is distance/time
so 150/7200=.0208km/s
unless you have to convert it to miles or something else. but use the formula!