31. There are C(5, 2) = 10 ways to choose 2 colors from a group of 10 colors if you don't care about the order. (Here, we treat blue background with violet letters as being indistinguishable from violet background with blue letters.)
Only one of those 10 pairs is "B and V", so the probability is 1/10.
a) P(B and V) = 10%
32. The 12 inch dimension on the figure is 0 inches for the cross section. The remaining dimensions of the cross section are
c) 5 in. × 4 in.
_____
C(n, k) = n!/(k!·(n-k)!)
C(5, 2) = 5!/(2!·3!) = 5·4/(2·1) = 10
Answer:
700/383
Step-by-step explanation:
-- They're losing employees . . . so you know that the line will slope down, and
its slope is negative;
-- They're losing employees at a steady rate . . . so you know that the slope is
the same everywhere on the line; this tells you that the graph is a straight line.
I can see the function right now, but I'll show you how to go through the steps to
find the function. I need to point out that these are steps that you've gone through
many times, but now that the subject pops up in a real-world situation, suddenly
you're running around in circles with your hair on fire screaming "What do I do ?
Somebody give me the answer !".
Just take a look at what has already been handed to you:
0 months . . . 65 employees
1 month . . . . 62 employees
2 months . . . 59 employees
You know three points on the line !
(0, 65) , (1, 62) , and (2, 59) .
For the first point, 'x' happens to be zero, so immediately
you have your y-intercept ! ' b ' = 65 .
You can use any two of the points to find the slope of the line.
You will calculate that the slope is negative-3 . . . which you
might have realized as you read the story, looked at the numbers,
and saw that they are <u>firing 3 employees per month</u>.
("Losing" them doesn't quite capture the true spirit of what is happening.)
So your function ... call it ' W(n) ' . . . Workforce after 'n' months . . .
is <em>W(n) = 65 - 3n</em> .
The life expectancies of residents of a country for which the average annual income is $80,000 for the three models are 12309.9352, 172.2436 and 4828.1393
The life expectancies of the models are given as:
--- model 1
--- model 2
--- model 3
Given that the average annual income is $80,000;
We simply substitute 80000 for income in the equations of the three models.
So, we have:
<u>Model 1</u>
<u>Model 2</u>
<u>Model 3</u>
Hence, the life expectancies are 12309.9352, 172.2436 and 4828.1393
Read more about linear models at:
brainly.com/question/8609070
Putting in h(1) would get you 1, putting in h(4) would get you 5.