There are several differences between a physical and chemical change in matter or substances. A physical change in a substance doesn't change what the substance is. In a chemical change where there is a chemical reaction, a new substance is formed and energy is either given off or absorbed.
B. The mouse is hungry , because you dont really know that only the mouse does
In general, we have this rate law express.:
![\mathrm{Rate} = k \cdot [A]^x [B]^y](https://tex.z-dn.net/?f=%5Cmathrm%7BRate%7D%20%3D%20k%20%5Ccdot%20%5BA%5D%5Ex%20%5BB%5D%5Ey)
we need to find x and y
ignore the given overall chemical reaction equation as we only preduct rate law from mechanism (not given to us).
then we go to compare two experiments in which only one concentration is changed
compare experiments 1 and 4 to find the effect of changing [B]
divide the larger [B] (experiment 4) by the smaller [B] (experiment 1) and call it Δ[B]
Δ[B]= 0.3 / 0.1 = 3
now divide experiment 4 by experient 1 for the given reaction rates, calling it ΔRate:
ΔRate = 1.7 × 10⁻⁵ / 5.5 × 10⁻⁶ = 34/11 = 3.090909...
solve for y in the equation
![\Delta \mathrm{Rate} = \Delta [B]^y](https://tex.z-dn.net/?f=%5CDelta%20%5Cmathrm%7BRate%7D%20%3D%20%5CDelta%20%5BB%5D%5Ey)

To this point,
![\mathrm{Rate} = k \cdot [A]^x [B]^1](https://tex.z-dn.net/?f=%5Cmathrm%7BRate%7D%20%3D%20k%20%5Ccdot%20%5BA%5D%5Ex%20%5BB%5D%5E1%20)
do the same to find x.
choose two experiments in which only the concentration of B is unchanged:
Dividing experiment 3 by experiment 2:
Δ[A] = 0.4 / 0.2 = 2
ΔRate = 8.8 × 10⁻⁵ / 2.2 × 10⁻⁵ = 4
solve for x for
![\Delta \mathrm{Rate} = \Delta [A]^x](https://tex.z-dn.net/?f=%5CDelta%20%5Cmathrm%7BRate%7D%20%3D%20%5CDelta%20%5BA%5D%5Ex)

the rate law is
Rate = k·[A]²[B]
Answer:
John Newlands propuso su ley de octavas en 1864 en la que organizó todos los elementos conocidos en ese momento en una tabla en orden de masa atómica relativa. Cuando hizo esto, descubrió que cada elemento era similar al elemento ocho lugares más adelante.
<span>Multiply the coefficient in front of the formula times the subscript for each element. This gives 36 carbon atoms, 72 hydrogen atoms, and 36 oxygen atoms.</span>