Answer:
58.0 g of MgO
Explanation:
in a perfect world, 70 g, however we don't live in a perfect world
The equation of reaction
2Mg + O₂ --> 2MgO
first find which element is limiting:
35 g x 1 mol/24.3 g of Mg x 2 mol of MgO/ 2 mole of Mg = 1.44 moles of MgO
35 g x 1 mol/32g of Mg x 2 mol of MgO/ 1 mole of O₂ = 2.1875 moles of MgO
This means Mg is the limiting factor, so you will be using this moles to find grams of MgO
1.44 mols of MgO x 40.3 g of MgO/ 1 mol = 58.0 g of MgO
Answer:
The coefficients are 6, 1, 3
Explanation:
HNCO →C3N3(NH2)3 + CO2
From the above equation, there are a total of 6 atoms of nitrogen on the right side and 1atom on the left. It can be balance by putting 6 in front of HNCO as shown below:
6HNCO → C3N3(NH2)3 + CO2
Now there are 6 atoms of carbon on the left side and 4 atoms on the right side. It can be balance by putting 3 in front of CO2 as shown below:
6HNCO → C3N3(NH2)3 + 3CO2
Now the equation is balanced as the numbers of atoms of the different elements on both sides of the equation are the same.
The coefficients are 6, 1, 3
Answer:
Molecular Weight
Explanation:
Chromium(III) Carbonate Cr2(CO3)3 Molecular Weight -- EndMemo.
The answer is 4.9 moles.
Solution:
Using the equation for boiling point elevation Δt,
Δt = i Kb m
we can rearrange the expression to solve for the molality m of the solution:
m = Δt / i Kb
Since we know that pure water boils at 100 °C, and the Ebullioscopic constant Kb for water is 0.512 °C·kg/mol,
m = (105°C - 100°C) / (2 * 0.512 °C·kg/mol)
= 4.883 mol/kg
From the molality m of the solution of salt added in a kilogram of water, we can now find the number of moles of salt:
m = number of moles / 1.0kg
number of moles = m*1.0kg
= (4.883 mol/kg) * (1.0kg)
= 4.9 moles