Answer
Assuming
east is the positive x direction
north is the positive y direction
initial velocity , u = 19 j m/s
a)
acceleration , a = 1.6 j m/s^2
Using first equation of motion
v = u + a × t
v = 19 + 5.6× 1.6
v = 28 j m/s
the velocity of the car after 5.6 s is 28 m/s north
b)
acceleration , a = -1.5 j m/s^2
Using first equation of motion
v = u + a × t
v = 19 - 5.6 ×1.5
v = 10.6 j m/s
the velocity of the car after 5.6 s is 10.6 m/s north
<u>Answer</u>
3.2857 g/cm³
<u>Explanation</u>
Density of a material is the mass of a unit volume of that material. It's SI unit is Kg/m³ but its has other units like g/cm³.
Density = mass/volume
= 46/14
= 3.2857 g/cm³
Average speed = (total distance covered) / (total time to cover the distance)
= (2,742 km) / (4.33 hours)
= (2,742 / 4.33) km/hr
= 633 km/hr (rounded)
No they don't. Incident rays parallel to the axis of a concave mirror
reflect from the mirror's surface and converge at its focal point.
Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens