The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
Wave speed = (wavelength) x (frequency)
= (4 m) x (2 /sec)
= 8 m/sec
Reflect parallel of the principal axis
A) use v=u+at for both
First section, v=27, u=0, a=2.4. You should get 11seconds.
Second section, v=0, u=27, a=-1.3. You should get 21seconds.
This means that the total time is 22seconds.
b) You can either use s=ut+0.5at^2 or v^2=u^2+2as. Personally, I would use the second one as you are not relying on your previous answer.
First section, v=27, u=0, a=2.4. You should get 152m.
Second section, v=0, u=27, a=-1.3. You should get 280m.
This makes your overall displacement 432m.
"700 watts" means 700 joules of work per second.
"300 watts" means 300 joules of work per second.
If the labels on both machines are true, and both machines
are loaded to their full capacity, then the 700-watt engine
is doing work faster than the 300-watt one.