Unbalanced because if it is pushing then stopping, that means that it is unbalanced.
Answer:

Explanation:
The interaction of the piece of copper and water means that the first one need to transfer heat in order to reach a thermal equilibrium with water. Then:

After a quick substitution, the expanded expression is:



The final temperature of the system is:

Answer:
AM has longer wavelength
Explanation:
The relation between the wavelength and teh frequency is given by
v = f x λ
Where, f is the frequency and λ be the wavelength.
It shows that the wavelength is inversely proportional to the frequency.
So, higher the frequency, smaller be the wavelength.
So, FM has high frequency than AM, thus, FM has lower wavelength as compared to AM.
Answer:
a) S = 2.35 10³ J/m²2
,
b)and the tape recorder must be in the positive Z-axis direction.
the answer is 5
c) the direction of the positive x axis
Explanation:
a) The Poynting vector or intensity of an electromagnetic wave is
S = 1 /μ₀ E x B
if we use that the fields are in phase
B = E / c
we substitute
S = E² /μ₀ c
let's calculate
s = 941 2 / (4π 10⁻⁷ 3 10⁸)
S = 2.35 10³ J/m²2
b) the two fields are perpendicular to each other and in the direction of propagation of the radiation
In this case, the electro field is in the y direction and the wave propagates in the ax direction, so the magnetic cap must be in the y-axis direction, and the tape recorder must be in the positive Z-axis direction.
the answer is 5
C) The poynting electrode has the direction of the electric field, by which or which should be in the direction of the positive x axis
Answer:
The length of rod A will be <u>greater than </u>the length of rod B
Explanation:
We, know that the formula for final length in linear thermal expansion of a rod is:
L' = L(1 + ∝ΔT)
where,
L' = Final Length
L = Initial Length
∝ = Co-efficient of linear expansion
ΔT = Change in temperature
Since, the rods here have same original length and the temperature difference is same as well. Therefore, the final length will only depend upon the coefficient of linear expansion.
For Rod A:
∝₁ = 12 x 10⁻⁶ °C⁻¹
For Rod B:
∝₂ = β₂/3
where,
β₂ = Coefficient of volumetric expansion for rod B = 24 x 10⁻⁶ °C⁻¹
Therefore,
∝₂ = 24 x 10⁻⁶ °C⁻¹/3
∝₂ = 8 x 10⁻⁶ °C⁻¹
Since,
∝₁ > ∝₂
Therefore,
L₁ > L₂
So, the length of rod A will be <u>greater than </u>the length of rod B