Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.
Answer:
a
Explanation:
the answer is a i'm pretty sure it might be wrong tho i'm sorry
Answer: I believe the answer is d) the rock crumbles at an ocean ridges
Explanation:
#1
- See H and C have shared their electrons so it's Covalent bonding
#2
Yes here we can see the dots and crosses clearly.
#3
It's Methane or CH_4
#4
There is no double bond
Answer:
1.98x10⁻¹² kg
Explanation:
The <em>energy of a photon</em> is given by:
h is Planck's constant, 6.626x10⁻³⁴ J·s
c is the speed of light, 3x10⁸ m/s
and λ is the wavelenght, 671 nm (or 6.71x10⁻⁷m)
- E = 6.626x10⁻³⁴ J·s * 3x10⁸ m/s ÷ 6.71x10⁻⁷m = 2.96x10⁻¹⁹ J
Now we multiply that value by <em>Avogadro's number</em>, to <u>calculate the energy of 1 mol of such protons</u>:
- 1 mol = 6.023x10²³ photons
- 2.96x10⁻¹⁹ J * 6.023x10²³ = 1.78x10⁵ J
Finally we <u>calculate the mass equivalence</u> using the equation:
- m = 1.78x10⁵ J / (3x10⁸ m/s)² = 1.98x10⁻¹² kg