An educated guess is called estimation
Answer:
The answer to your question is 24.325
Explanation:
Data
Magnesium-24 Abundance = 78.70%
Magnesium-25 Abundance = 10.13%
Magnesium-26 Abundance = 11.17%
Process
1.- Convert the abundance to decimals
Magnesium-24 Abundance = 78.70/100 = 0.787
Magnesium-25 Abundance = 10.13/100 = 0.1013
Magnesium-26 Abundance = 11.17/100 = 0.1117
2.- Write an equation
Average atomic mass = (Atomic mass-1 x Abundance 1) + (Atomic mass 2 x
Abundance-2) + (Atomic mass 3 x Abundance 3)
3.- Substitution
Average atomic mass = (24 x 0.787) + (25 x 0.1013) + (26 x 0.1117)
4.- Simplification
Average atomic mass = 18.888 + 2.533 + 2.904
5.- Result
Average atomic mass = 24.325
8,002.5 would be written as
8.0025 x 10 and 3
because you move the decimal place 3 times to the left.
It is important to note that mass and mole pertain to different units of measurement, thus, 1 mole of one substance may have a lower or higher mass compared to a different substance. The mass of an object gives a measure of the number of atoms present in the substance while the number of moles of a substance refers to the amount of a chemical substance it has and is often used for chemical reactions.
For this problem, we first get the molar mass of each substance:
Molar mass of H2O = 18.0153 g/mol
Molar mass of C6H12O6 = 180.1559 g/mol
We then convert each substance into units of mass (grams), where:
1 mol H20 x 18.0153 g/mol = 18.0153 g H20
1 mol C6H12O6 x 180.1559 g/mol = 180.1559 g C6H12O6
It was then determined that 1 mole of glucose has more mass than 1 mole of water.
Answer: The correct answer is absorbed.
Explanation:
Bond formation is a type of exothermic process. In these reactions when two atoms come close to each other, energy is released in this process.
On the other hand, in the breaking of bond, energy is required because the atoms are to be separated from each other. This is a type of endothermic process. So, the energy must be absorbed.
Hence, the correct answer is absorbed.