Answer:
ΔH°rxn = -827.5 kJ
Explanation:
Let's consider the following balanced equation.
2 PbS(s) + 3 O₂(g) → 2 PbO(s) + 2 SO₂(g)
We can calculate the standard enthalpy of reaction (ΔH°rxn) from the standard enthalpies of formation (ΔH°f) using the following expression.
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g)
)] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g)
)]
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g)
)] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g)
)]
ΔH°rxn = [2 mol × (-217.32 kJ/mol) + 2 mol × (-296.83)] - [2 mol × (-100.4) + 3 mol × 0 kJ/mol]
ΔH°rxn = -827.5 kJ
Answer:
5.83g C4H10 x (1 mol C4H10/58.05 g (molar mass of C4H10) x (10 mol H2O/ 2 mol C4H10) x (18.002 g H2O (molar mass of H2O)/ 1 mol H2O=
Answer: 9.04 g of H2O
Explanation:
First set up equation: C4H10 (g)+ O2(g) -> CO2(g) + H2O(g)
Next balance it: 2C4H10 (g)+ 13O2(g) -> 8CO2(g) + 10H2O (g)
Use equation to get moles and plug given
5.83g C4H10 x (1 mol C4H10/58.05 g (molar mass of C4H10) x (10 mol H2O/ 2 mol C4H10) x (18.002 g H2O (molar mass of H2O)/ 1 mol H2O
Answer:
I believe it is a hope this helps
The electron configuration that belongs to the atom with the lowest first ionization energy is francium.
<h3>What is ionization energy? </h3>
Ionization energy is defined as the minimum amount of energy required to remove the most loosely electron present in outermost shell.
<h3>Ionization energy across period</h3>
Ionization energy increase as we move from left to right in the period. This can be explained as when we move from left to right along period new electron is added to the same shell which increase the nuclear charge. Hence results int he decrease in size. Due to this decrease in size more energy is required to remove electron from outermost shell.
<h3>Ionization energy along group</h3>
Ionization energy decrease as we move from top to bottom along group. This can be explained as we move from top to bottom new electron is added to new shell. Due to addition of new shell the size of atom increases which results in the decrease in the nuclear charge. Due to this less amount of energy is needed to remove an electron.
Thus, we concluded that the electron configuration that belongs to the atom with the lowest first ionization energy is francium.
learn more about ionization energy:
brainly.com/question/1602374
#SPJ4
Explanation:
-plants that can absorb copper ions are grown on soil with low grade copper ores.
-the plants are burned and the copper compounds are within the Ash.
-copper ions can be leached from the Ash by adding sulphuric acid, this makes a solution of copper sulphate
-the displacement of scrap iron makes pure copper metals.