The catalyst (4) decreases the activation energy required for a reaction, by holding reactants in place
The energy required to raise the temperature of 3 kg of iron from 20° C to 25°C is 6,750 J( Option B)
<u>Explanation:</u>
Given:
Specific Heat capacity of Iron= 0.450 J/ g °C
To Find:
Required Energy to raise the Temperature
Formula:
Amount of energy required is given by the formula,
Q = mC (ΔT)
Solution:
M = mass of the iron in g
So 3 kg = 3000 g
C = specific heat of iron = 0.450 J/ g °C [ from the given table]
ΔT = change in temperature = 25° C - 20°C = 5°C
Plugin the values, we will get,
Q = 3000 g × 0.450 J/ g °C × 5°C
= 6,750 J
So the energy required is 6,750 J.
Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.
Answer:
The frequency of photon is 0.75×10¹⁵ s⁻¹.
Explanation:
Given data:
Energy of photon = 5×10⁻¹⁹ J
Frequency of photon = ?
Solution:
Formula;
E = hf
h = planck's constant = 6.63×10⁻³⁴ Js
5×10⁻¹⁹ J = 6.63×10⁻³⁴ Js ×f
f = 5×10⁻¹⁹ J / 6.63×10⁻³⁴ Js
f = 0.75×10¹⁵ s⁻¹
The frequency of photon is 0.75×10¹⁵ s⁻¹.
Answer:
Cr (HSO4)3
Explanation:
its molecular weight is 343.20 g/mol
its molecular formula can also be written as CrH3O12S3
molar mass of Cr (HSO4)3 can be calculated by following method;
atomic mass of Cr = 51.9961 u
atomic mass of H = 1 u
atomic mass of S = 32.065 u
atomic mass of O = 16 u
molar mass of Cr(HSO4)3 = 51.9961+ 1.00784×3 + 32.065×3 + 15.999×12
molar mass of Cr(HSO4)3 =51.9961+3.02352+96.195+ 191.988
molar mass of Cr(HSO4)3 = 343.20 g/mol