Answer:
that's because....
group 1 (e.g Na, K) those tend to lose one electron to gain noble gas electron configuration.
they can achieve that by just losing one electron from their outer shell.
as you go down the group 1, element gets bigger in size, which means there is more space between nucleus (which is in center of atom) and electron of outer shell. the more far away they are the less attraction force between them.
so its easier for potassuim to lose one electron than for lithuim.
so that means potassium will easily give up 1 electron to react with non metal or other element therefore it is more reactive than lithuim
but in case of non metal, the opposite happens but simple to understand.
as you go down the group 7 (halogen- Cl, Br, I) element will get bigger therefore force between nucleus and outer electron is getting smaller. they have to gain 1 electron in order to fill the outer shell (to gain noble gas electron configuration.)
as florine is more smaller in size than clorine it is more reactive because florine has more tendency to pull extra electron from metal or other element towards its side. so it easily gain 1 electron to react.
Answer:
Probably around 6 because the ph of hydrochloric acid is 3
Explanation:
II. sulfur (S) and carbon (C)
and
III. fluorine (F) and oxygen (O)
will form covalent bonds, so the answer will be:
e. II and III
Explanation:
To know is what type of bond is formed between atoms we need to look at the electronegativity difference between the atoms.
If the electronegativity difference is less than 0.4 there is a nonpolar covalent bond.
If the electronegativity difference is between 0.4 and 1.8 there is a polar covalent bond. (if is a metal involved we consider the bond to be ionic)
If the electronegativity difference is greater then 1.8 there is an ionic bond.
We have the following cases:
I. lithium (Li) and sulfur (S)
electronegativity difference = 2.5 (S) - 1 (Li) = 1.5 but because there is a metal involved the bond will be ionic
II. sulfur (S) and carbon (C)
electronegativity difference = 2.5 (S) - 2.5 (C) = 0 so the bond will be nonpolar covalent
III. fluorine (F) and oxygen (O)
electronegativity difference = 4 (F) - 3.5 (O) = 0.5 so the bond will be polar covalent bond.
Learn more about:
covalent and ionic bonds
brainly.com/question/1802971
#learnwithBrainly
The ideal gas law may be written as

where
p = pressure
ρ =density
T = temperature
M = molar mass
R = 8.314 J/(mol-K)
For the given problem,
ρ = 0.09 g/L = 0.09 kg/m³
T = 26°C = 26+273 K = 299 K
M = 1.008 g/mol = 1.008 x 10⁻³ kg/mol
Therefore

Note that 1 atm = 101325 Pa
Therefore
p = 2.2195 x 10⁵ Pa
= 221.95 kPa
= (2.295 x 10⁵)/101325 atm
= 2.19 atm
Answer:
2.2195 x 10⁵ Pa (or 221.95 kPa or 2.19 atm)