Did you know the moon is hollow
Answer:
Mass of Na₂CrO₄ = 5.75 g
Explanation:
First of all we will write the balance chemical equation.
2AgNO₃ + Na₂CrO₄ → Ag₂CrO₄ + 2NaNO₃
Now we will calculate the moles of AgNO₃.
Number of moles = mass / molar mass
Molar mass of AgNO₃ = 107.87 + 14 + 3× 16 = 169.87 g/mol
Number of moles = mass / molar mass
Number of moles = 12.1 g / 169.87 g/mol = 0.071 mol
Now we will compare the moles of AgNO₃ and Na₂CrO₄ from balance chemical equation.
AgNO₃ : Na₂CrO₄
2 : 1
0.071 : 1/2× 0.071 = 0.0355
Now we will calculate the mass of Na₂CrO₄.
Molar mass of Na₂CrO₄ = 23×2 + 52 + 16×4 = 162 g/mol
Mass of Na₂CrO₄ = number of moles × molar mass
Mass of Na₂CrO₄ = 0.0355 mol × 162 g/mol
Mass of Na₂CrO₄ = 5.75 g
Answer:
Before we get into the first law of thermodynamics we need to understand the relation between heat and work and the concept of internal energy. Just like mass, energy is always conserved i.e. it can neither be created nor destroyed but it can be transformed from one form to another. Internal energy is a thermodynamic property of the system that refers to the energy associated with the molecules of the system which includes kinetic energy and potential energy.
Whenever a system goes through any change due to interaction of heat, work and internal energy, it is followed by numerous energy transfer and conversions. However, during these transfers, there is no net change in the total energy.
Similarly, if we look at the first law of thermodynamics it affirms that heat is a form of energy. What it means is that the thermodynamic processes are governed by the principle of conservation of energy. The first law of thermodynamics is also sometimes referred to as the Law of Conservation of Energy
Explanation: