1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
2 years ago
7

Can anyone pls help with this ASAP!!! :((

Mathematics
2 answers:
MrRissso [65]2 years ago
7 0

Answer: I believe your answer is C.

NNADVOKAT [17]2 years ago
3 0

Answer:

the correct answer is C.

Step-by-step explanation:

You might be interested in
A home is to be built on a 56 foot 9 inch wide lot. The house is 5 feet 5 inches from the side of the lot and is 34 feet 10 inch
ch4aika [34]

Answer:

=16 ft 6 in

Step-by-step explanation:

Remainder side = Total lot - house -other side

=(56 ft 9 in) - (34 ft 10 in) - (5 ft 5 in)

=(55 ft 21 in) - (34 ft 10 in) - (5 ft 5 in)

=16 ft 6 in

8 0
3 years ago
Which choices correctly describe reflections in the diagram? Check all that apply.
inessss [21]

Answer:

2

3

5

.................................................

8 0
3 years ago
Read 2 more answers
Please help with this AP Calculus question !
melomori [17]

Answer:

C.  \displaystyle \frac{cos(x)}{x} - ln(x)sin(x)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Trig Derivatives

Logarithmic Derivatives

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = ln(x)cos(x)

<u>Step 2: Differentiate</u>

  1. Derivative Rule [Product Rule]:                                                                     \displaystyle f'(x) = \frac{d}{dx}[ln(x)]cos(x) + ln(x)\frac{d}{dx}[cos(x)]
  2. Logarithmic Derivative:                                                                                 \displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)\frac{d}{dx}[cos(x)]
  3. Trig Derivative:                                                                                             \displaystyle f'(x) = \frac{1}{x}cos(x) + ln(x)[-sin(x)]
  4. Simplify:                                                                                                         \displaystyle f'(x) = \frac{cos(x)}{x} - ln(x)sin(x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

7 0
3 years ago
A large tank holds 1.9x10 to the power of 7 gallons of oil. how much oil can be stored in 7 tanks? Write in scientific notation
kupik [55]
It will equal 1.33x10^8
5 0
3 years ago
To the nearest tenth, which is the BEST estimate for the volume of the given pyramid?
mixer [17]

Answer:

4.2 cubic inches

Step-by-step explanation:

Find the diagram attached

Volume of the rectangular pyramid = BH/3

B is the base area

H is the height of the pyramid

Given

Base area = 3.2in * 1.4in

Base area = 4.48sq. in

Height = 2.8in

Volume of the rectangular pyramid = 4.48*2.8/3

Volume of the rectangular pyramid = 12.544/3

Volume of the rectangular pyramid = 4.2 cubic inches

5 0
2 years ago
Other questions:
  • I need help with this question.
    14·1 answer
  • What is 78.852 grams rounded to the nearest tenth
    8·2 answers
  • The opposite of -36 if u answer this questions 15pts
    6·1 answer
  • Assume that when an adult is randomly​ selected, the probability that they do not require vision correction is 23​%. If 6 adults
    8·1 answer
  • Prove, using the second derivative, that the general quadratic y= ax^2+bx+c, is:
    5·1 answer
  • Please answer correctly !!!!!<br> Will mark Brianliest !!!!!!!!!!!!!!
    10·2 answers
  • How many of each item did<br> Madeline sell? Show your work.
    10·1 answer
  • Leo weighs 10 pounds of dog
    7·1 answer
  • 2(r+7) <br> ———— &lt; r+3<br> -6
    9·1 answer
  • last week, 4/5 of the students in Mr. Zanker's class went on a field trip. 9/10 of the students in Mr. Haynes's went. What is th
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!