1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
2 years ago
8

If x = 2, y = 3 and z = 5, calculate the following: 5x - z

Mathematics
1 answer:
nikdorinn [45]2 years ago
5 0
5*2 - 5
5*2=10
10-5=5
You might be interested in
A rectangular garden has a length of 5a + 17 feet and a width of 4a feet. Which expression represents the area of the garden in
harina [27]

Answer:

(5a + 17) x 4a

Step-by-step explanation:

4 0
3 years ago
An office supply company is shipping a case of wooden pencils to a store there are 64 boxes of pencils in the case if each box o
babymother [125]

Answer:

The case is ten pounds.

Step-by-step explanation:

There are 16 ounces in a pound. Using this information, you can multiply the ounces by the 64 boxes. Then divide the product by 16. You should be left with 10 pounds.

3 0
2 years ago
Read 2 more answers
How many solutions does the system of equations have?
statuscvo [17]
5x - 20y = 60...reduce by dividing by 5
x - 4y = 12
this is the same as the other equation....therefore, it is the same line...meaning infinite solutions
=============
y - 7x = -14
y = 7x - 14.....slope = 7, y int = -14

7y - 49x = -2
7y = 49x - 2
y = 7x - 2/7.....slope is 7, y int is -2/7

if the slopes are the same, but the y int are different, then u have a parallel lines with no solutions
5 0
3 years ago
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ 
\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ 
\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation 
becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} 
\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} 
\end{array}


\large\begin{array}{l} \textsf{Using 
the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ 
\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ 
\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ 
\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ 
\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot
 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}
 \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ 
\mathsf{\Delta=(4.8)^2}\\\\\\ 
\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ 
\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ 
\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! 
2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} 
\end{array}

\large\begin{array}{l} \begin{array}{rcl} 
\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ 
\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} 
\end{array}


\large\begin{array}{l} \textsf{Both 
are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ 
\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or 
}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse 
tangent function:}\\\\ \begin{array}{rcl} 
\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ 
\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ 
\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}
 \textsf{Now, restrict x values to the interval 
}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ 
\begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} 
\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{
 is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx 
4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} 
\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} 
\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}
 \textsf{Solution set:}\\\\ 
\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}
 \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
A region R is enclosed by the coordinate graph of y=k(x-5)^2. When this region is revolved around the x-axis, the solid has a vo
alexandr1967 [171]
K would equal 3.

Your welcome.
4 0
3 years ago
Other questions:
  • How are discontinuities and zeros determined in a rational function
    14·1 answer
  • $14.30 watch ; 6 3/4% sales tax
    5·2 answers
  • Ted says that 7 tenths multiplied by 10 equals 70 hundredths. Is he correct? Use a place value chart to explain your answer.
    8·1 answer
  • Terrence finished a word search in 3/4 the time it took frank. charlotte finished the word search in 2/3 the time it took terren
    5·2 answers
  • Last questions, plz help
    15·1 answer
  • 4x+5y-5z=196 -11x-7y+12z=-211 -8x-9y-z=-236 Solve for x y z
    13·2 answers
  • My goal rides his skateboard from 3:15 p.m. to 4:25 p.m. how long does Michael ride his skateboard
    15·2 answers
  • Are the two triangles congruent
    9·1 answer
  • For PE Mr Jones wants to split boys and girls equally into as many mixed groups as possible. There are 168 boys and 60 girls. Ho
    7·1 answer
  • Which reason is the correct answer
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!