Answer:
20.4 grams Zn
Explanation:
To find the mass, you first need to find the moles. This can be found using the Ideal Gas Law equation:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
Before you can plug the values into the equation, you need to convert Celsius to Kelvin.
P = 0.980 atm R = 0.08206 atm*L/mol*K
V = 7.80 L T = 25.0 °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(0.980 atm)(7.80 L) = n(0.08206 atm*L/mol*K)(298.15 K)
7.644 = n(24.466)
0.312 moles = n
Now that you have the number of moles, you can convert it to grams using the atomic mass of zinc. The final answer should have 3 sig figs to match the sig figs in the given values.
Atomic Mass (Zn): 65.380 g/mol
0.312 moles Zn 65.380 grams
------------------------- x ------------------------- = 20.4 grams Zn
1 mole
If 4 moles of P is used by 5 mole of O2
then....0.489 moles will be used by 5/4 × .489 = .611 moles of O2
so .611 moles
so if 4 moles of P is burnt , 1 mole of P4O10 is produced ....so for .489 moles...... .489/4=.122 moles !
so mass will be .122× 283.89 = 34.7 grams
so first ans is .611 moles and second is 34.7 grams !
if you have any problem regarding this , just comment !!!
Answer:
d. it has a high boiling point
Explanation:
all ionic compounds with ionic bonds have high boiling points
Answer:
B.9.710-11M
Explanation:
<h3>plss tell me if im wrong</h3>
Answer:
Momentum of first train car will reduce
Explanation:
When the moving care collides with the stationary car, it will increase the momentum of the stationary car. However, its own momentum will reduce.
It is so because the speed of the first train car will reduce after collision due to loss of energy in the collision while the stationary car may gain some momentum due to rise in velocity from zero (velocity at stationary position).