Answer: i would say producer
Explanation:
Answer:
94.325 g
Explanation:
We'll begin by converting 350 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
350 mL = 350 mL × 1 L /1000 mL
350 mL = 0.35 L
Next, we shall determine the number of mole of KC₂H₃O₂ in the solution. This can be obtained as follow:
Volume = 0.35 L
Molarity of KC₂H₃O₂ = 2.75 M
Mole of KC₂H₃O₂ =?
Molarity = mole /Volume
2.75 = Mole of KC₂H₃O₂ / 0.35
Cross multiply
Mole of KC₂H₃O₂ = 2.75 × 0.35
Mole of KC₂H₃O₂ = 0.9625 mole
Finally, we shall determine the mass of KC₂H₃O₂ needed to prepare the solution. This can be obtained as illustrated below:
Mole of KC₂H₃O₂ = 0.9625 mole
Molar mass of KC₂H₃O₂ = 39 + (12×2) +(3×1) + (16×2)
= 39 + 24 + 3 + 32
= 98 g/mol
Mass of KC₂H₃O₂ =?
Mass = mole × molar mass
Mass of KC₂H₃O₂ = 0.9625 × 98
Mass of KC₂H₃O₂ = 94.325 g
Thus, the mass of KC₂H₃O₂ needed to prepare the solution is 94.325 g
Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
The answers here is B) Before, the substance was a gas, later it was a liquid.
Gas particles move freely and away from each other. However, liquid particles move around each other.
Hope this helps! :)(
The species that is the conjugate acid is HC₂H₃O₂(aq). The correct option is d.
<h3>What are conjugate acid?</h3>
Conjugates acids are those acids which are made when an acid donates a proton to a base according to Bronsted Lowry theory.
In other words, we can say that it is an acid with hydrogen ion. An example is water (base) reacting with an acid to form the hydronium ion (conjugate acid).
Thus, the correct option is d, HC₂H₃O₂(aq).
Learn more about conjugate acid
brainly.com/question/12883745
#SPJ4