For this case we have that by definition, the kinetic energy is given by the following formula:
![k= \frac {1} {2} * m * v ^ 2](https://tex.z-dn.net/?f=k%3D%20%5Cfrac%20%7B1%7D%20%7B2%7D%20%2A%20m%20%2A%20v%20%5E%202)
Where:
m: It is the mass
v: It is the velocity
According to the data we have to:
![m = 100 \ kg\\v = 9 \frac {m} {s}](https://tex.z-dn.net/?f=m%20%3D%20100%20%5C%20kg%5C%5Cv%20%3D%209%20%5Cfrac%20%7Bm%7D%20%7Bs%7D)
Substituting the values we have:
![k = \frac {1} {2} * (100) * (9) ^ 2\\k = \frac {1} {2} * (100) * 81\\k = 50 * 81\\k = 4050](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%20%7B1%7D%20%7B2%7D%20%2A%20%28100%29%20%2A%20%289%29%20%5E%202%5C%5Ck%20%3D%20%5Cfrac%20%7B1%7D%20%7B2%7D%20%2A%20%28100%29%20%2A%2081%5C%5Ck%20%3D%2050%20%2A%2081%5C%5Ck%20%3D%204050)
finally, the kinetic energy is ![4050 \ J](https://tex.z-dn.net/?f=4050%20%5C%20J)
Answer:
Option A
Answer:
The answer is A, B, C, D
Explanation:
This is because gravity is the weakest force of the four fundamental forces, so it automatically cancels letter E
Answer:
B - A
Explanation:
For the combination of 2 vector to due southwest, 1 vector must due south and the other vector due west. Since vector B is already due west, vector A should due south. As vector A is already due north, vector -A would due south. So the combination of B + (-A) or B - A should points southwest
Answer:
oh umm it think its TV=11x*20s
Explanation:
Answer:
1.05045 kg/m³
Explanation:
= Density of air = 1.26 kg/m³
= Density of hot air
= Mass of balloon = 539 kg
g = Acceleration due to gravity = 9.81 m/s²
v = Volume of air in balloon = ![2.62\times 10^3\ m^3](https://tex.z-dn.net/?f=2.62%5Ctimes%2010%5E3%5C%20m%5E3)
The net force on the balloon will be
![F_n=(\rho_a-\rho_{ha})vg](https://tex.z-dn.net/?f=F_n%3D%28%5Crho_a-%5Crho_%7Bha%7D%29vg)
Also
![F_n=m_ag](https://tex.z-dn.net/?f=F_n%3Dm_ag)
![\\\Rightarrow 549g=(\rho_a-\rho_{ha})vg\\\Rightarrow 549=(1.26-\rho_{ha})2.62\times 10^3\\\Rightarrow -\rho_{ha}=\frac{549}{2.62\times 10^3}-1.26\\\Rightarrow \rho_{ha}=1.05045\ kg/m^3](https://tex.z-dn.net/?f=%5C%5C%5CRightarrow%20549g%3D%28%5Crho_a-%5Crho_%7Bha%7D%29vg%5C%5C%5CRightarrow%20549%3D%281.26-%5Crho_%7Bha%7D%292.62%5Ctimes%2010%5E3%5C%5C%5CRightarrow%20-%5Crho_%7Bha%7D%3D%5Cfrac%7B549%7D%7B2.62%5Ctimes%2010%5E3%7D-1.26%5C%5C%5CRightarrow%20%5Crho_%7Bha%7D%3D1.05045%5C%20kg%2Fm%5E3)
The density of hot air inside the envelope is 1.05045 kg/m³