1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
10

Newton’s Third Law of Motion states that for every action there is an equal and opposite reaction. Which of these illustrates Ne

wton’s Third Law?
A: Two students of similar mass run into each other. They bounce off each other when they collide.

B: Two students of similar mass run side by side into a wall and punch holes of equal size before emerging on the other side.

C: Two students of similar mass run in opposite directions, but one accelerates at twice the rate of the other.

D: Two students of similar mass run at the same speed in opposite directions on a track. They will collide with 400 Newtons of force in 400 meters.
Physics
1 answer:
Angelina_Jolie [31]3 years ago
4 0

Answer:

A

Explanation:

An equal and opposite reaction happens when they run into eachother and bounce off. What makes it equal is when they have the same amount of force applied when they collided.

You might be interested in
A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost
densk [106]

Answer:

20J

Explanation:

In a collision, whether elastic or inelastic, momentum is always conserved. Therefore, using the principle of conservation of momentum we can first get the final velocity of the two bodies after collision. This is given by;

m₁u₁ + m₂u₂ = (m₁ + m₂)v          ---------------(i)

Where;

m₁ and m₂ are the masses of first and second objects respectively

u₁ and u₂ are the initial velocities of the first and second objects respectively

v  is the final velocity of the two objects after collision;

From the question;

m₁ = 2.0kg

m₂ = 8.0kg

u₁ = 5.0m/s

u₂ = 0        (since the object is initially at rest)

<em>Substitute these values into equation (i) as follows;</em>

(2.0 x 5.0) + (8.0 x 0) = (2.0 + 8.0)v

(10.0) + (0) = (10.0)v

10.0 = 10.0v

v = 1m/s

The two bodies stick together and move off with a velocity of 1m/s after collision.

The kinetic energy(KE₁) of the objects before collision is given by

KE₁ = \frac{1}{2}m₁u₁² +  \frac{1}{2}m₂u₂²       ---------------(ii)

Substitute the appropriate values into equation (ii)

KE₁ = (\frac{1}{2} x 2.0 x 5.0²) +  (\frac{1}{2} x 8.0 x 0²)

KE₁ = 25.0J

Also, the kinetic energy(KE₂) of the objects after collision is given by

KE₂ = \frac{1}{2}(m₁ + m₂)v²      ---------------(iii)

Substitute the appropriate values into equation (iii)

KE₂ = \frac{1}{2} ( 2.0 + 8.0) x 1²

KE₂ = 5J

The kinetic energy lost (K) by the system is therefore the difference between the kinetic energy before collision and kinetic energy after collision

K = KE₂ - KE₁

K = 5 - 25

K = -20J

The negative sign shows that energy was lost. The kinetic energy lost by the system is 20J

3 0
4 years ago
Which of the following quantities provide enough information to calculate the tension in a string of mass per unit length μ that
Bad White [126]

Answer:

A. the wave speed v and Wavelength

Explanation:

Given that

Mass density per unit length=μ

Frequency = f

The velocity V given as

\mu=\dfrac{T}{V^2}\ kg/m

V=\sqrt{\dfrac{T}{\mu}}

T=Tension

V=Velocity

V= f λ

λ=Wavelength

Therefore to find the tension ,only wavelength and speed is required.

The answer is A.

8 0
3 years ago
An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first second. (b
lys-0071 [83]

Answer:

a)Distance traveled during the first second = 4.905 m.

b)Final velocity at which the object hits the ground = 38.36 m/s

c)Distance traveled during the last second of motion before hitting the ground = 33.45 m

Explanation:

a) We have equation of motion

             S = ut + 0.5at²

     Here u = 0, and a = g

              S = 0.5gt²

    Distance traveled during the first second ( t =1 )

              S = 0.5 x 9.81 x 1² = 4.905 m

   Distance traveled during the first second = 4.905 m.

b)  We have equation of motion

            v² = u² + 2as

      Here u = 0, s= 75 m and a = g

           v² = 0² + 2 x g x 75 = 150 x 9.81

           v = 38.36 m/s

      Final velocity at which the object hits the ground = 38.36 m/s

c) We have S = 0.5gt²

                   75 = 0.5 x 9.81 x t²

                    t = 3.91 s

   We need to find distance traveled last second

   That is

          S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m

   Distance traveled during the last second of motion before hitting the ground = 33.45 m

       

3 0
3 years ago
If the frequency of a given wave increases,what happens to the wavelength?
Greeley [361]
It shortens so that the tips reach faster
8 0
3 years ago
Read 2 more answers
The motor of a washing machine rotates with a period of 28 ms. What is the angular speed, in units of rad/s?
pentagon [3]

Answer:

2π/[28 x (10^-3)]

Explanation:

Angular speed : ω=2π/T

T = 28ms = 28 x (10^-3) s

Angular speed = 2π/[28 x (10^-3)]

5 0
3 years ago
Other questions:
  • How would you present weight change if earth had twice the mass that it does now
    12·1 answer
  • A uniform disk turns at 5.00 rev/s around a frictionless spindle. A non-rotating rod, of the same mass as the disk and length eq
    10·1 answer
  • What is indicated by the slope of an acceleration vs. time graph?
    7·1 answer
  • How long must a simple pendulum be if it is to make exactly one swing per second? (That is, one complete vibration takes exactly
    6·1 answer
  • A bungee cord can stretch, but it is never compressed. When thedistance between the two ends of the cord is less than its unstre
    10·1 answer
  • Engineers are designing a curved section of a highway. If the radius of curvature of the curve is 173 m, at what angle should th
    5·1 answer
  • A particle moves with a velocity v in a circle of radius r, then its angular velocity is equal
    6·1 answer
  • A dog chases a skateboarder travelling at 10.4\,\dfrac{\text{m}}{\text{s}}10.4 sm ​ 10, point, 4, start fraction, start text, m,
    12·1 answer
  • A dog running at a speed of 12 m/s has 1,080 J of kinetic energy. What is the mass of the dog
    15·1 answer
  • A block with a mass of 3.7 kg slides with a speed of 2.2 m/s on a frictionless surface. The block runs into a stationary spring
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!