Answer: 88 m/s
Explanation:
If we are talking about an acceleration at a uniform rate, we are dealing with constant acceleration, hence we can use the following equation:
(1)
Where:
Is the final velocity of the plane (we know it is zero because we are told the pilot stops the plane at a specific distance)
Is the initial velocity of the plane
is the constant acceleration of the plane
is the distance at which the plane stops
Isolating
from (1):
(2)
(3)
Finally:
This is the veocity the plane had before braking began
Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
Answer:
962291.57928 m²
Explanation:
= Pressure =
(full reflection)
I = Intensity = 
P = Power = 
c = Speed of light = 
M = Mass of Sun = 
m = Mass of ship = 1500 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Force of radiation is given by

This force will balance the gravitational force as stated in the question

The area of the must be 962291.57928 m²
Answer:
option C and D
Explanation:
When a stunt driver is rotating on the banked road the force which is responsible for the centripetal acceleration of the car is Frictional force and the Normal Force.
The Frictional force component of the banked road will protect the car from skidding.
And the normal force component will protect the car from toppling inward due to centripetal force acting on it.
Hence, the correct answer is option C and D
Answer:
average speed = total distance/total time