According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is -6048 N
<h3>
What does Newton's third law say ?</h3>
The law state that in every action, there will be equal and opposite reaction.
Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.
Let us first calculate the force involved in the acceleration of the rocket by using the formula
F = ma
Where mass m = 87.4 kg, acceleration a = 69.2 m/s2
Substitute the two parameters into the formula
F = 87.4 x 69.2
F = 6048.08 N
According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.
Therefore, the normal force acting on the astronaut is -6048 N approximately
Learn more about forces here: brainly.com/question/12970081
#SPJ1
The answer is A vaporization
Answer:
The car would speed off 2x's as fast as the speed of the heavy truck provided the the collision is an elastic collision where there's no or little friction occurring within the scenario.
Explanation:
Newton's law proves that an object with a greater mass can move objects of lesser mass at greater distances and speed.
'Heat' is another term to describe thermal energy, whether the thermal energy
just sits in some object or substance, or flows from one object to another one
that's cooler.
'Heat' is NOT another word for 'Temperature'. If you think of it that way,
then you'll have a hard time UNlearning that idea and getting yourself
unmuddled and straightened out. Please don't even go there.