The least number of component of a vector quantity is two. These are the x-component and the y-component.
The resultant vector, or vector as we refer to it in this item, can be calculated through the equation,
RV = sqrt ((Vx)² + (Vy)²)
From the equation, it can be noted that if we let Vx equal to zero,
RV = Vy
Similarly, if we let Vy be equal to zero then,
RV = Vx
Thus, it is still possible for the vector to become nonzero even if one of its components is zero.
Area near a sea having flat land and low relief
Rainbows are caused by the dispersion of light, which itself consists of a combination of refraction and reflection of light around little droplets of water.
Choice C
Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
Because mass and distance determine gravity, so the more mass you have, the more gravity.