<u>Answer:</u> The angle of diffraction is 0.498°
<u>Explanation:</u>
To calculate the angle of diffraction, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 3
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = 0.100 mm =
(Conversion factor: 1 m = 1000 mm)
= angle of diffraction = ?
Putting values in above equation:

Hence, the angle of diffraction is 0.498°
The best answer is that it reduces the level of ground water
Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
a direction perpendicular to the direction of propagation of the wave, it is called a transverse wave.
Answer:
elastic force and weight are related to the acceleration of the System.
Explanation:
The relationship between these two forces can be found with Newton's second law.
- W = m a
K x - m g = m a
We see that elastic force and weight are related to the acceleration of the System.
If a harmonic movement is desired, an extra force that increases the elastic force is applied, but to begin the movement this force is eliminated, in general , if the relationship between this external and elastic force is desired, the only requirement is that it be small for harmonic movement to occur