Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
The acceleration that Andrew experience during his ride is 3.6m/s²
The formula for calculating centripetal acceleration is expressed as:
a = v²/r
v is the speed
r is the radius
Given the following expression
v = 6m/s
r = 10m
Substitute the given parameters into the formula
a = 6²/10
a = 36/10
a = 3.6m/s²
Hence the acceleration that Andrew experience during his ride is 3.6m/s²
Learn more here: brainly.com/question/1268866
Answer:
There is a thing called a continental drift. It started about 200 million years ago. At first the continents were all attached, this super continent was called pangaea. Continental drift occurs because of the shift of the tectonic plates within the earth's outer shell. The heat from within the earth triggers movement to occur. This a very slow process though. It took 200 million years for the continents to get where the are now and would probably take another 200 to collide.
Answer:
3400 m
Explanation:
Both lightning and thunder happen at the same time but one is faster than the other. The distance traveled by a sound can be calculated from its speed such that;
speed = distance/time, hence, distance = speed x time.
<em>For a thunder with 340 m/s speed and 10 seconds away from lightning, the distance between the thunder and the lightning can be calculated as</em>;
distance = 340 m/s x 10 s = 3400 m