Answer:
F= 4788 N
Explanation:
Because the car moves with uniformly accelerated movement we apply the following formula:
vf²=v₀²+2*a*d Formula (1)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
d=36.9 m
v₀=14.0 m/s m/s
vf= 0
Calculating of the acceleration of the car
We replace dta in the formula (1)
vf²=v₀²+2*a*d
(0)²=(14)²+2*a*(36.9)
-(14)²= (73.8) *a
a= - (196) / (73.8)
a= - 2.66 m/s²
Newton's second law of the car in direction horizontal (x):
∑Fx = m*ax Formula (2)
∑F : algebraic sum of the forces in direction x-axis (N)
m : mass (kg)
a : acceleration (m/s²)
Data
m=1800 Fkg
a= - 2.66 m/s²
Magnitude of the horizontal net force (F) that is required to bring the car to a halt in a distance of 36.9 m :
We replace data in the formula (2)
-F= (1800 kg) * ( -2.66 m/s²
)
F= 4788 N
Im pretty sure it’s a because it makes more sense you know?.
Answer: The kinetic energy in physics can be defined as the energy possessed by the body when it is in motion relatively to the other bodies. This energy depends on the mass of the body and the square of the velocity. Its measurable unit is in Joules.
Answer and Explanation:
Given data:
The electric field is
E
=
1000
N
/
C
The initial kinetic energy of the ejected electrons is
k
=
3
e
V
=
(
3
×
1.6
×
10
−
19
)
J
The expression for the conservation of energy of the electrons is given by
k
=
U
p
k
=
e
V
Here
U
p
=
e
V
is the potential energy of the electron
Here
V
=
E
d
is the electric potential in electric field
Here
e
=
1.6
×
10
−
19
C
is the charge of the electon
Substituting the values in the above equation as,
k
=
q
V
k
=
e
(
E
d
)
(
3
×
1.6
×
10
−
19
J
)
=
(
1.6
×
10
−
19
C
)
(
1000
N
/
C
)
×
d
d
=
0.003
m
d
=
3
m
m
Explanation:
Answer:
What will be the increase in frequency if these waves are reflected = 2979.63Hz
Explanation:
The detailed steps and appropriate formula is as shown in the attached file.