Answer:
Conduction
Explanation:
Because When air is in contact with the ocean it is at a different temperature than the seas surface
<span>Answer is: pH of solution of sodium cyanide is 11.3.
Chemical reaction 1: NaCN(aq) → CN</span>⁻(aq)
+ Na⁺<span>(aq).
Chemical reaction 2: CN</span>⁻ +
H₂O(l) ⇄ HCN(aq) + OH⁻<span>(aq).
c(NaCN) = c(CN</span>⁻<span>)
= 0.021 M.
Ka(HCN) = 4.9·10</span>⁻¹⁰<span>.
Kb(CN</span>⁻) = 10⁻¹⁴ ÷
4.9·10⁻¹⁰ = 2.04·10⁻⁵<span>.
Kb = [HCN] · [OH</span>⁻]
/ [CN⁻<span>].
[HCN] · [OH</span>⁻<span>] =
x.
[CN</span>⁻<span>] = 0.021 M - x..
2.04·10</span>⁻⁵<span> = x² / (0.021 M
- x).
Solve quadratic equation: x = [OH</span>⁻<span>] = 0.00198 M.
pOH = -log(0.00198 M) = 2.70.
pH = 14 - 2.70 = 11.3.</span>
Answer:
94.4g/mol is molar mass of the unknown
Explanation:
Based on the freezing point depression equation:
ΔT = Kf*m*i
<em>Where ΔT is the depression in freezing point (1.87°C)</em>
<em>Kf is freezing point depression constant of water (1.86°Ckg/mol)</em>
<em>And i is Van't Hoff factor (1 for nonelectrolyte solutes)</em>
<em />
Replacing:
1.87°C = 1.86°CKg/mol*m*i
1.005mol/kg solvent = m
Using the mass of the solvent we can find the oles of the nonelectrolyte:
1.005mol/kg solvent * 0.4764kg = 0.479moles
Molar mass is defined as the ratio between mass of a substance in grams and moles, that is:
45.2g / 0.479mol =
<h3>94.4g/mol is molar mass of the unknown</h3>
Answer:
True.
Hope this helps!
let me know if u get it right
In the equation,
2Al(s) + 3Cl2(g) —> 2AlCl3(s),
the large number "3" in front of Cl2 indicates the the number of moles of Chlorine molecules needed to balance the equation.
Hope this will help you.
If you like my answer. Please mark it as brainliest And Be my follower if possible.