Answer:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring = 8 g/mL
Explanation:
From the question given above, the following data were obtained:
Mass of ring = 32 g
Volume of water = 64 mL
Volume of water + ring = 68 mL
Density of ring =?
Next, we shall determine the volume of the ring. This can be obtained as follow:
Volume of water = 64 mL
Volume of water + ring = 68 mL
Volume of ring =?
Volume of ring= (Volume of water + ring) – (Volume of water)
Volume of ring = 68 – 64
Volume of ring = 4 mL
Finally, we shall determine the density of the ring. This can be obtained as follow:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring =?
Density = mass / volume
Density of ring = 32 / 4
Density of ring = 8 g/mL
Answer:
Explanation:
When a salt is dissolved , it increases the boiling point . Increase in boiling point depends upon number of ions . So it is a colligative property .
.19 m AgNO₃ . Each molecule will ionize into two ions . So effective molar concentration is 0.19 x 2 = .38 m
0.17 m CrSO4.Each molecule will ionize into two ions . So effective molar concentration is 0.17 x 2 = .34 m
0.13 m Mn(NO₃)₂. Each molecule will ionize into three ions . So effective molar concentration is 0.13 x 3 = .39 m
0.31 m Sucrose(nonelectrolyte). Molecules will not ionize . So effective molar concentration is 0.31 x 1 = .31 m
Higher the molar concentration , greater the depression in boiling point .
So lowest boiling point is 0.13 m Mn(NO₃)₂.
second highest boiling point is 0.19 m AgNO3.
Third lowest boiling point is 0.17 m CrSO4
Highest boiling point or lowest depression 0.31 m Sucrose.
a . 4
b . 1
c . 2
d . 3
Answer:
It's false.
Explanation:
Molecular orbital theory states that the number of molecular orbitals is equal to the number of atomic orbitals that overlap. The lowest energy molecular orbital is formed when two atomic orbitals that are in phase overlap, forming a bonding molecular orbital. However, another molecular orbital is also formed, called an anti-binding orbital.
So if an "n" quantity of atomic orbitals is combined, an "n" quantity of molecular orbitals is formed.
Have a nice day!