The theoretical yield of I2 in the reaction would be 0.23 g
<h3>Theoretical yield</h3>
This refers to the stoichiometric yield of a reaction.
From the equation of the reaction:
Ca(IO3)2 + 10 KI + 12 HCl → 6 I2 + CaCl2 + 10 KCl + 6 H2O
The mole ratio of Ca(IO3)2 and I2 is 1: 6
Mole of 15.00 mL, 0.0100 M Ca(IO3)2 = 15/1000 x 0.0100
= 0.00015 mole
Equivalent mole of I2 = 0.00015 x 6
= 0.009 mole
mass of 0.0009 I2 = 0.0009 x 253.809
= 0.23 g
More on stoichiometric calculations can be found here: brainly.com/question/6907332
Answer:
Explanation:
a. the salt produced would be Mg3N2(magnesium nitride)
b. magnesium loses 2 electron to form Mg2+ ion and nitrogen gains 3 electron to form n3-
when several of these ions come together 3 Mg2+ ion combine with 2 n3- ion to form Mg3N2 thus Mg getting six electron from nitrogen to form a ionic bond.
c. the reaction is not balanced Mg + N2 = Mg3n2
to make it balanced the reaction should be 3 Mg + N2 = Mg3N2.
the reaction was not balanced before because the number of Mg on both side of the reaction was not equal.
d. magnesium nitrate has formula Mg(NO3)2 is formed when Mg combines with nitrogen and oxygen Mg + N2 + o2
Answer: 1
Explanation:
The number of times a machine increases a force exerted on it The input force will be the same as the output force.
The redshift<span> of distant </span>galaxies<span> means that the Universe is probably </span>expanding. If we then go back far enough in time, everything must have been squashed together into a tiny dot and the rapid eruption from this tiny dot was the Big Bang. Another piece of evidence could be that because light takes a long time to travel across the Universe, when we look at very distant galaxies or stars we are also looking back in time. This shows us that galaxies a long time ago were quite different from those today, showing that the Universe has changed. This fits better with the Big Bang theory than the Steady State theory