Answer:
2N2H2SO4
Explanation:
this is your answer calculate
0.15*240=36 ml of alcohol in <span>240 ml of a 15% alcohol mixture
0.4x = </span>ml of alcohol in x ml of a 40% alcohol mixture
0.2(x+240)= ml of alcohol in (x+240) ml of a 20% alcohol mixture
0.15*240 + 0.4x = 0.2(x+240)
36+0.4x=0.2x+48
0.2x = 12
x=12/0.2=120/6=20 ml of a 40% alcohol mixture
The formula or chemical formula of a compound is same irrespective of source / mode of synthesis . Thus if a sample of compound has one carbon atom for every two atoms of oxygen (CO2), the formula will remains the same
So the answer is that for all other samples the compound X should hold this ration true.
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)
Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/
Answer:
Random particle motion in liquids and gases is a difficult concept for in temperature, the particles move faster as they gain kinetic energy.
Explanation: