A covalent bond means shared electrons between atoms. This is similar to kids sharing markers because the markers (electrons) are being shared between the kids (atoms). Covalent bonds are different than this metaphor because 1) the electrons are constantly moving about while the kids can steal and keep the markers and 2) the electrons and atoms are physically smaller
Answer: 2.3 moles
Explanation:
Recall that based on Avogadro's law, 1 mole of any substance has 6.02 x 10^23 atoms
So if 1 mole of Aluminum = 6.02 x 10^23 atoms
Then, Z moles = 1.4 x 10^24 atoms
To get the value of Z, we cross multiply:
1 mole x 1.4 x 10^24 atoms = Z x (6.02 x 10^23 atoms)
1.4 x 10^24 atoms = Z x (6.02 x 10^23)
Hence, Z = (1.4 x 10^24 atoms) ➗ (6.02 x 10^23 atoms)
Z =2.3 moles
Thus, there are 2.3 moles in 1.4 x 10^24 atoms of aluminum.
Answer:
0.077M is the concentration of the hydroxyl ion
Explanation:
Dilution factor is the ratio between the aliquot that is taken of a solution and the total volume of the diluted solution.
For the problem, dilution factor is:
7.53cm³ / 147cm³ =<em> 0.05122</em>
To obtain molarity of a diluted solution you must multiply dilution factor and initial molarity of the solution, thus:
1.5 M × 0.05122 = <em>0.077M is the concentration of the hydroxyl ion</em>
The yield of lithium chloride is 1.92 grams.
Option D.
<h3><u>Explanation:</u></h3>
In this reaction, we can see that 1 mole of lithium hydroxide reacts with 1 mole of potassium chloride to produce 1 mole of lithium chloride and 1 mole of potassium hydroxide.
Molecular weight of lithium hydroxide is 24.
Molecular weight of lithium chloride is 42.5.
So 24 grams of lithium hydroxide produces 42.5 grams of lithium chloride.
So, 20 grams of lithium hydroxide produces
grams =11. 29 grams of lithium chloride.
But this is when the yield is 100%.
But yield is 17%.
So the yield is 1.92 grams of lithium chloride.