One line passes through the points \blueD{(-3,-1)}(−3,−1)start color #11accd, (, minus, 3, comma, minus, 1, ), end color #11accd
mart [117]
Answer:
The lines are perpendicular
Step-by-step explanation:
we know that
If two lines are parallel, then their slopes are the same
If two lines are perpendicular, then their slopes are opposite reciprocal (the product of their slopes is equal to -1)
Remember that
The formula to calculate the slope between two points is equal to
<em>Find the slope of the first line</em>
we have the points
(-3,-1) and (1,-9)
substitute in the formula
<em>Find the slope of the second line</em>
we have the points
(1,4) and (5,6)
substitute in the formula
Simplify
<em>Compare the slopes</em>
Find out the product

therefore
The lines are perpendicular
Answer:
x = -5/2 y +25/2
Step-by-step explanation:
5y + 2x = 25
Subtract 5y from each side
5y + 2x -5y= -5y+25
2x = -5y +25
Divide by 2
2x/2 = -5y/2 +25/2
x = -5/2 y +25/2
Answer:
1) Combine like terms
2) ![\sqrt[3]{x} =3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D3)
3) cube both sides of the equation
4) ![4\sqrt[3]{27} +8\sqrt[3]{27}=36](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B27%7D%20%2B8%5Csqrt%5B3%5D%7B27%7D%3D36)
5) 4(3) + 8(3) = 36
Step-by-step explanation:
1) Combine like terms
2) ![\sqrt[3]{x} =3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D3)
3) cube both sides of the equation
4) ![4\sqrt[3]{27} +8\sqrt[3]{27}=36](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B27%7D%20%2B8%5Csqrt%5B3%5D%7B27%7D%3D36)
5) 4(3) + 8(3) = 36
Answer:
*The bar is supposed to go on top of the number, but I will put it at the bottom because I don't know how to do it at the top*
a) 0.<u>5</u>
b) 0.<u>13456</u>
Step-by-step explanation:
a) The 5 is repeating so you put the bar on top of the 5
b) The number 13456 is repeated so you put the bar on top of the 13456
Answer:

Step-by-step explanation:
The logistic equation is the following one:

In which P(t) is the size of the population after t years, K is the carrying capacity of the population, r is the decimal growth rate of the population and P(0) is the initial population of the lake.
In this problem, we have that:
Biologists stocked a lake with 80 fish and estimated the carrying capacity (the maximal population for the fish of that species in that lake) to be 2,000. This means that
.
The number of fish tripled in the first year. This means that
.
Using the equation for P(1), that is, P(t) when
, we find the value of r.









Applying ln to both sides.


This means that the expression for the size of the population after t years is:
