First, you should solve for

, which equals

. Now, solve the integral of

=

, to get that

. You can check this by taking the integral of what you got. Now by the Fundamental Theorem
![\int\limits^2_0 {4x} \, dx=[2x^2] ^{2}_{0}=2(2)^{2}-2(0)^2=8](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E2_0%20%7B4x%7D%20%5C%2C%20dx%3D%5B2x%5E2%5D%20%5E%7B2%7D_%7B0%7D%3D2%282%29%5E%7B2%7D-2%280%29%5E2%3D8)
.
This should be the answer to your question, if I understood what you were asking correctly.
Answer:
option A
Step-by-step explanation:
take 45 degree as reference angle
using sin rule
sin 45 = opposite / hypotenuse
= s/
= s
root 2 and root 2 gets cancel
8 = s
Answer:
Part A = $180
Part B = $104
Step-by-step explanation:
Part A:
You do 255÷5=51
51 x 4 = 180
Part B:
You do 130÷5=26
26 x 4 = 104
Distance from a point to a line (Coordinate Geometry)
Method 1: When the line is vertical or horizontal
, the distance from a point to a vertical or horizontal line can be found by the simple difference of coordinates
. Finding the distance from a point to a line is easy if the line is vertical or horizontal. We simply find the difference between the appropriate coordinates of the point and the line. In fact, for vertical lines, this is the only way to do it, since the other methods require the slope of the line, which is undefined for evrtical lines.
Method 2: (If you're looking for an equation) Distance = | Px - Lx |
Hope this helps!