1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
11

A motorist is driving at 15 m/s when she sees that a traffic light 315m ahead has just turned red. She knows that this light sta

y red for 25 s, and she wants to be 20 m from the ligt when it turns green again. Taht way, she will still be able to stop if the light stays red longer than expected. She applies the brake gradually such that her acceleration is ax(t)= c + bt, where c and b are constant. Assume she starts with a constant speed at the origin.
Find the values of c a b and any other unknown constants in order to answer the following questions.

1. Given the motorist's acceleration as a function of time, what are her position and velocity fucntions? - Do not use numbers for any constant here. Only derive the position and velocity functions.

2. What is her speed as she reaches the light?
Physics
1 answer:
mel-nik [20]3 years ago
3 0

Answer:

1)   x = x₀ + vot - ½ c t² - 1/6 bt³,    v = v₀ - ct - ½ b t²

2)   v₁ = 5.25 m/s,         v₂ = -8 m/s

Explanation:

1) For this exercise, the relationship of the body is not constant, so you must use the definition of speed and position to find them.

acceleration is

           a = c + bt

a) the relationship between velocity and acceleration

           a = \frac{dv}{dt}

           dv = -a dt

The negative sign is because the acceleration is contrary to the speed to stop the vehicle.

we integrate

           ∫ dv = - ∫ a dt

           ∫ dv = -∫ (c + bt) dt

            v = -c t - ½ b t²

This must be valued from the lower limit, the velocity is vo, up to the upper limit, the velocity is v for time t

             v - v₀ = -c (t-0) - ½ b (t²-0)

             v = v₀ - ct - ½ b t²

b) the velocity of the body is

             v = \frac{dx}{dt}

             dx = v dt

we replace and integrate

              ∫ dx = ∫ (v₀ - c t - ½ bt²) dt

              x-x₀ = v₀ t - ½ c t² - ½ b ⅓ t³

Evaluations from the lower limit the body is at x₀ for t = 0 and the upper limit the body is x = x for t = t

           x - x₀ = v₀ (t-0) - ½ c (t²-0) + \frac{1}{6}  (t³ -0)

 

           x = x₀ + vot - ½ c t² - 1/6 bt³

2) The speed when you reach the traffic light

Let's write the data that indicates, the initial velocity is vo = 15 m / s, the initial position is xo = 315m, let's use the initial values ​​to find the constants.

       t = 25 s x = 20

we substitute

          20 = 315 + 15 25 - ½ c 25² - 1/6 b 25³

         0 = 295 + 375 - 312.5 c - 2604.16 b

         670 = 312.5 c + 2604.16 b

we simplify

         2.144 = c + 8.33 b

Now let's use the equation for velocity,

        v = v₀ - ct - ½ b t²

        v = 15 - c 25 - ½ b 25²

        v = 15 - 25 c - 312.5 b

               

let's write our two equations

        2.144 = c + 8.33 b

        v = 15 - 25 c - 312.5 b

Let's examine our equations, we have two equations and three unknowns (b, c, v) for which the system cannot be solved without another equation, in the statement it is not clear, but the most common condition is that if the semaphore does not change, it follows with this acceleration (constant) to a stop

               a = c + b 25

from the first equation

              c = 8.33 / 2.144 b

              C = 3.885 b

we substitute in the other two

            v = 15 - 25 (3.885 b) - 312.5 b

            v = 15 - 409.6 b

final acelearation

            a = 28.885 b

           

let's use the cinematic equation

               v_{f}^2= v² - 2 a x

                0 = v² - 2a 20

               0 = v² - (28.885b) 40

               v² = 1155.4 b

we write the system of equations

               v = 15 - 409.6 b

               v² = 1155.4 b

resolve

              v²= 1155.4 ( \frac{15 -v }{409.6} )

              v² = 2.8 ( 15 -v)

              v² + 2.8 v - 42.3 = 0

              v=  [ -2.8 ±\sqrt {2.8^2 + 4  \ 42.3)  } ]/2 = [-2.8 ± 13.3]/2

              v₁ = 5.25 m/s

              v₂ = -8 m/s

You might be interested in
a stationary wave of fundamental frequency has a frequency of 120 hz has been generated in a medium calculate three lighter freq
DENIUS [597]

Answer:

hope it helps

Explanation:

8 0
2 years ago
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 3.3 cm . Two of
sweet [91]

Answer:

1.44\times 10^{-3} N

Explanation:

We are given that three charged particle are placed at each corner  of equilateral triangle.

q_1=-8.2 nC,q_2=-16.4 nC,q_3=8.0nC

q_1=-8.2\times 10^{-9} C

q_2=-16.4\times 10^{-9} C

q_3=8.0\times 10^{-9} C

Side of equilateral triangle =3.3 cm=\frac{3.3}{100}=0.033m

We know that each angle of equilateral angle=60^{\circ}

Net force=F =\sum\frac{kQq }{d^2}

Where k=9\times 10^9 Nm^2/C^2

If we bisect the angle at q_3 then we have 30 degrees from there to either charge.

Direction of vertical force  due to charge q_1 and q_2

Therefore, force will be added

Vertical  force=9\times 10^9\times q_3(q_1+q_2)\frac{cos30}{(0.033)^2})

Vertical net force=9\times 10^9\times 8\times 10^{-9}(-8.2-16.4)\times 10^{-9}\times 10^6\times\frac{\sqrt3}{2\times 1089}

Vertical  force =9\times 8(-24.6)\times 10^{-9}\times 10^6\times 1.732\times \frac{1}{2178}

Vertical  force=-1.41\times 10^{-3}N (towards q_1}

Horizontal component are opposite in direction then will b subtracted

Horizontal force=9\times 10^9\times 8\times 10^{-9}(-8.2+16.4) \times 10^{-9}\times \frac{sin30}{(0.033)^2}

Horizontal force=0.27\times 10^-3} N(towards q_2

Net electric force acting on particle 3 due to particle =\sqrt{F^2_x+F^2_y}

Net force=\sqrt{(-1.41\times 10^{-3})^2+(0.27\times 10^{-3})^2}

Net force=1.44\times 10^{-3} N

3 0
3 years ago
gravity increases proportionally with mass and it decreases as the square of the distance between two masses true false
Tom [10]
This answer is going to be false
4 0
4 years ago
Enumerar 5 actividades en casa o en el trabajo en la que usualmente se mantenga una postura corporal incorrecta
ludmilkaskok [199]

Answer:

Existen cinco actividades en las que se mantiene una postura corporal incorrecta:

1) Sentarse en una silla.

2) Agacharse y levantar una objeto del piso, especialmente cuando es pesado.

3) Sentarse en un escritorio, especialmente frente a una computadora.

4) Llevar una mochila, especialmente si está sobrecargada.

5) Dormir sobre una cama en una posición inadecuada.

Explanation:

Existen cinco actividades en las que se mantiene una postura corporal incorrecta:

1) Sentarse en una silla.

2) Agacharse y levantar una objeto del piso, especialmente cuando es pesado.

3) Sentarse en un escritorio, especialmente frente a una computadora.

4) Llevar una mochila, especialmente si está sobrecargada.

5) Dormir sobre una cama en una posición inadecuada.

5 0
3 years ago
A crate slides down a ramp that makes a 20∘ angle with the ground. To keep the crate moving at a steady speed, Paige pushes back
prisoha [69]

Answer:

the answer is 69.7687j

Explanation:

W =F sin Φ

6 0
3 years ago
Other questions:
  • A wood pipe having an inner diameter of 3 ft. is bound together using steel hoops having a cross sectional area of 0.2 in.2 The
    9·1 answer
  • What is the strength of the electric field between two charged parallel plates that are 0.25 cm apart and have a potential of 9.
    7·1 answer
  • Which of the following describes an action-reaction pair?
    7·2 answers
  • A ball is thrown vertically downwards with a speed 7.3 m/s from the top of a 51 m tall building. With what speed will it hit the
    10·2 answers
  • Which of the following could be a potential safety hazard of indoor recreation?
    9·2 answers
  • Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
    12·1 answer
  • What is missing from this free body diagram of a sled being pulled across level ice by a dog team
    13·2 answers
  • A fish in an aquarium with flat sides looks out at a hungry cat. To the fish, the distance to the cat appears to be
    8·2 answers
  • The two blocks are connected by a light string that passes over a frictionless pulley with a negligible mass. The 2 kg block lie
    5·1 answer
  • PLease help with this this is pretty hard for me i kinda get it but not fully
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!