The the drift velocity of the electrons is determined by atom vibrations in the crystal lattice.
<h3>How to explain the information?</h3>
Assume we could increase the average time between collisions in a typical metal to get to a limit of zero resistance. The free electrons would therefore be continuously accelerated by a constant applied voltage, according to the classical paradigm of conduction. Both the current and the drift speed would gradually pick up over time.
Although it is not the scenario implied by the question, it is possible to switch to zero resistance by using a superconducting wire instead of the usual metal. In this scenario, the maximum current is constrained, the drift velocity of the electrons is determined by atom vibrations in the crystal lattice, and it is difficult to produce a potential difference across the superconductor.
Learn more about electrons in:
brainly.com/question/860094
#SPJ4
Answer:
Explanation:
The <u>centripetal acceleration</u>
of an object moving in a uniform circular path is given by the following equation:
(1)
Where:
is the tangential velocity
is the radius of the circle
On the other hand, the tangential velocity is expressed as:
(2)
Where
is the angular velocity, which can be found knowing the child makes 5 revolutions in 13.4s:
(3)
Substituting (3) in (2):
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
Answer:
The velocity is 
Explanation:
From the question we are told that
The mass of the bullet is 
The initial speed of the bullet is 
The mass of the target is 
The initial velocity of target is 
The final velocity of the bullet is is 
Generally according to the law of momentum conservation we have that

=> 
=> 
Answer:
The distance is shortenend by factor .1715
Explanation:
5 n = 1/r^2
sqrt (1/5) = r
170 n = 1 / ( x sqrt(1/5))^2
(xsqrt 1/5)^2 = 1/170
x sqrt 1/5 = .076696
x = .1715
Answer:
The oscillation frequency of the spring is 1.66 Hz.
Explanation:
Let m is the mass of the object that is suspended vertically from a support. The potential energy stored in the spring is given by :

k is the spring constant
x is the distance to the lowest point form the initial position.
When the object reaches the highest point, the stored potential energy stored in the spring gets converted to the potential energy.

Equating these two energies,

.............(1)
The expression for the oscillation frequency is given by :

(from equation (1))

f = 1.66 Hz
So, the oscillation frequency of the spring is 1.66 Hz. Hence, this is the required solution.