Answer:
(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m
(b) thermal energy was generated by friction is 1.88 x
J
(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N
Explanation:
given information:
m = 750 kg
initial velocity,
= 110 km/h = 110 x 1000/3600 = 30.6 m/s
initial height,
= 22 m
slope, θ = 2.5°
(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?
according to conservation-energy
EP = EK
mgh = 
gh = 
h = 
= 47.6 m
(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?
thermal energy = mgΔh
= mg (h -
)
= 750 x 9.8 x (47.6 - 22)
= 188160 Joule
= 1.88 x
J
(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?
f d = mgΔh
f = mgΔh / d,
where h = d sin θ, d = h/sinθ
therefore
f = (mgΔh) / (h/sinθ)
= 1.88 x
/(22/sin 2.5°)
= 373 N
The horizontal speed of the object 1.0 seconds later is 1) 5.0 m/s.
Explanation:
The motion of an object thrown horizontally off a cliff is a projectile motion, which follows a parabolic path that consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
This means that the horizontal speed of an object in projectile motion does not change, and remains constant during the whole motion.
Since in this case the object has been launched with a horizontal speed of
v = 5.0 m/s
this means that this speed will remain constant during the motion, so its horizontal speed 1.0 s later is also 5.0 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
2.7%
Explanation:
Given:
Uncertainty of the speedometer (u)= 2.5km/h
Speed measured at that uncertainty (v) = 92km/h
Percent uncertainty (p) is given as the ratio of the uncertainty to the speed measured then multiplied by 100%. i.e
p =
%
p =
%
p = 2.7%
Therefore, the percent uncertainty is 2.7%
B would be the correct answer
Answer:
0.84 m
Explanation:
Given in the y direction:
Δy = 0.60 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
0.60 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.35 s
Given in the x direction:
v₀ = 2.4 m/s
a = 0 m/s²
t = 0.35 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (2.4 m/s) (0.35 s) + ½ (0 m/s²) (0.35 s)²
Δx = 0.84 m