Answer:
Desert
Explanation:
The desert receives the least amount of rainfall yearly.
A desert can be described a barren area of land where little amount of rainfall occurs and, because of this, living conditions are not favourable for plants and animal life. Because there is no vegetation in a desert, the bare surface of the ground are subjected to denudation.
Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon:
The latent heat of fusion of water is 80 cal/g.
The specific heat of water is 1 cal/g-C.
The latent heat of vaporization of water is 540 cal/g.
Therefore, if we have 1.5 kg = 1500 g, the total heat requirement is:
1500 g[(80 cal/g) + (1 cal/g-C)(100 - 0)C + (540 cal/g)] = 1500 g(720 cal/g) = 1,080,000 cal.
That depends on how 'x' is related to 'y' and 'z' ... like the angles between all of them, and whether they're all on the same planet. A drawing would sure help.
The part tht is mostly damaged is papillary