Answer:

Explanation:
Given that,
Mass of the bowling ball, m = 5 kg
Radius of the ball, r = 11 cm = 0.11 m
Angular velocity with which the ball rolls, 
To find,
The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball.
Solution,
The translational kinetic energy of the ball is :



The rotational kinetic energy of the ball is :



Ratio of translational to the rotational kinetic energy as :

So, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is 5:2
Answer: 4.5 billion years
Explanation:
Some of the water molecules in your drinking glass were created more than 4.5 billion years ago, according to new research.
That makes them older than the Earth, older than the solar system — even older than the sun itself.
Answer:
False: Quaternary structure is achieved when multiple polypeptide chains in protein come together.
Explanation:
There are four levels of protein structure: primary, secondary, tertiary, and Quaternary structure.
Tertiary structure is a protein structure, which is achieved when a protein folds into a compact, three-dimensional shape stabilized by interactions between side-chain R groups of amino acids.
However, Quaternary structure is achieved when multiple polypeptide chains in protein come together.
So first Identify all the given Varibales so u can choose which Eqauton to use
D=200m
T=4s
Vi=10m/s
Vf=?
You should this equation
D= 0.50(Vf+Vi)T
Plug in the values
200= 0.50 (Vf+10) 4
Divide the 4 out of the right side and if you do sumthing to one side you gotta do it to the other
200 divided by 4= 0.50(Vf+10)
50= 0.50(Vf+10)
Now expand the 0.50
So 50= 0.5Vf + 5 (because 0.5 times 10 is 5)
Now get rid of the 5
50-5= 0.5Vf
45 =0.5Vf now Divide the 0.5 out
45 divided by 0.5 = Vf
And 45/0.5 is 90
So 90=Vf
Therefore the final Velocity is 90m/s