Answer:
V = 0.63 L
Explanation:
To solve this problem, we need to use the Charle's law which is a law that involves temperature and volume, assuming we have a constant pressure. The problem do not state that the pressure is being altered, so we can safely assume that the pressure is constant (Maybe 1 atm).
Now, as the pressure is constant, the Charle's law is the following:
V₁ / T₁ = V₂ / T₂ (1) V is volume in Liter, and T is temperature in Kelvin.
Using this law with the given data, we solve for V₂:
V₂ = V₁T₂ / T₁
Before we use this expression, let's convert the temperatures to Kelvin:
T₁ = 19 + 273 = 292 K
T₂ = 250 + 273 = 523 K
Now, let's calculate the volume of the balloon:
V₂ = 0.35 * 523 / 292
<h2>
V₂ = 0.63 L</h2>
Answer: 1. rock stone gase from developing the other difference
Answer:
a) a0 was 46.2 grams
b) It will take 259 years
c) The fossil is 1845 years old
Explanation:
<em>An unknown radioactive substance has a half-life of 3.20hours . If 46.2g of the substance is currently present, what mass A0 was present 8.00 hours ago?</em>
A = A0 * (1/2)^(t/h)
⇒ with A = the final amount = 46.2 grams
⇒ A0 = the original amount
⇒ t = time = 8 hours
⇒ h = half-life time = 3.2 hours
46.2 = Ao*(1/2)^(8/3.2)
Ao = 261.35 grams
<em>Americium-241 is used in some smoke detectors. It is an alpha emitter with a half-life of 432 years. How long will it take in years for 34.0% of an Am-241 sample to decay?</em>
t = (ln(0.66))-0.693) * 432 = 259 years
It will take 259 years
<em>A fossil was analyzed and determined to have a carbon-14 level that is 80% that of living organisms. The half-life of C-14 is 5730 years. How old is the fossil?</em>
<em />
t = (ln(0.80))-0.693) * 5730 = 1845
The fossil is 1845 years old
To get a result with the best degree of precision, the
number of significant figures should be equal to the smallest number of
significant figures of the given numbers. In this case, the smallest is 3 as
given by the number 9.03 mL.
Therefore density is:
<span>11.50 g / 9.03 mL = 1.27 g/mL</span>