Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = x(1 + x)³
<u>Step 2: Differentiate</u>
- Product Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot \frac{d}{dx}[1 + x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B1%20%2B%20x%5D)
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot (\frac{d}{dx}[1] + \frac{d}{dx}[x])](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%28%5Cfrac%7Bd%7D%7Bdx%7D%5B1%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%29)
- Basic Power Rule:

- Simplify:

- Factor:
![\displaystyle y' = (1 + x)^2 \bigg[ (1 + x) + 3x \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%281%20%2B%20x%29%5E2%20%5Cbigg%5B%20%281%20%2B%20x%29%20%2B%203x%20%5Cbigg%5D)
- Combine like terms:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
The correct answer is B. Are definitions that are used in the legal system.
Answer:
acquired immuno deficiency syndrome
The two stimulis that they use are <span>a white lab rat and a loud noise
The little albert experiement was aimed to proof whether Pavlov's classical conditioning for dog is also applicable to humans.
They psychologist first expose the baby to rat and make an extremely loud voice soon after to see whether they could induce fear toward rats to the baby.</span>
Answer: The answer is Adaption-level Phenomenon
Explanation: Adaption-level phenomenon is a tendency which people have to adapt fast to a new situation until the situation becomes the norm. They get used to such situation such that it is no longer big deal to them anymore and another new experience is needed. If a new situation seems better than the current state the person feels better but only for a little while, if the situation however feels like a step backward, the person becomes sad and frustrated.