1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
12

- The gravitational force on a 352 kg satellite is -2100 N. Find its

Physics
1 answer:
Dimas [21]3 years ago
6 0

Answer:

8173.8 km

Explanation:

Fg=G(M*m/r^2)

r=sqrt(G*M*m/Fg)

G=6.6743*10^-11

M(earth)=5.972*10^24kg

M(object)=352kg

Fg=-2100N

r=sqrt((6.6743*10^-11)*(5.972*10^24kg)*(352)/-2100)

r=8173808m

r=8173.8km

You might be interested in
What is the ratio of the sun’s gravitational pull on Mercury to the sun’s gravitational pull on the earth?
Marta_Voda [28]

Answer:

The answer is \frac{F_{Sun-Mercury} }{F_{Sun-Earth} } =0,3709. Let's learn why.

Explanation:

Newton's law of universal gravitation says;

F_{g} =G.\frac{m_{1}.m_{2}}{r^{2}}

Here G is a universal gravitational <u>constant</u> and is measured experimentally.

Sun's gravitational pull on mercury is:

F_{Sun-Mercury} =G.\frac{m_{sun}.3,30.10^{23}}{(5,79.10^{10})^{2} }

Therefore F_{Sun-Mercury} = Gm_{sun} 98,4366

Sun's gravitational pull on Earth is:

F_{Sun-Earth} =G.\frac{m_{sun} 5,97.10^{24} }{(1,50.10^{11}) ^{2}}

Therefore F_{Sun-Earth} =Gm_{sun} 265,33

As a result;

\frac{F_{Sun-Mercury}}{F_{Sun-Earth} }=\frac{Gm_{sun}98,4366}{Gm_{sun}265,33 } =0,3709

4 0
3 years ago
A group of students left school at 8:00 am on a field trip to a science museum 90 miles away. Which best describes the average s
Aliun [14]

Answer:

45

Explanation:

because the equation for speed is distance divided by time! hope that helps gave a nice day!

7 0
2 years ago
A 5 kg pineapple is hanging completely still in mid air on a string and suddenly explodes
11111nata11111 [884]

Answer:

Explanation:

Conservation of momentum

Initial momentum is zero

3(15) + 2(v) = 0

v = - 22.5 m/s

v = 22.5 m/s downward

3 0
3 years ago
If a rock is thrown upward on the planet Mars with a velocity of 15 m/s, its height above the ground (in meters) after t seconds
s2008m [1.1K]

(a) The velocity (in m/s) of the rock after 1 second is 11.28 m/s.

(b) The velocity of the rock after 2 seconds is 7.56 m/s.

(c) The time for the block to hit the surface is 4.03.

(d) The velocity of the block at the maximum height is 0.

<h3>Velocity of the rock</h3>

The velocity of the rock is determined as shown below;

Height of the rock after 1 second; H(t) = 15(1) - 1.86(1)² = 13.14 m

v² = u² - 2gh

where;

  • g is acceleration due to gravity in mars = 3.72 m/s²

v² = (15)² - 2(3.72)(13.14)

v² = 127.23

v = √127.23

v = 11.28 m/s

<h3>Velocity of the rock when t = 2 second</h3>

v = dh/dt

v = 15 - 3.72t

v(2) = 15 - 3.72(2)

v(2) = 7.56 m/s

<h3>Time for the rock to reach maximum height</h3>

dh/dt = 0

15 - 3.72t = 0

t = 4.03 s

<h3>Velocity of the rock when it hits the surface</h3>

v = u - gt

v = 15 - 3.72(4.03)

v = 0

Learn more about velocity at maximum height here: brainly.com/question/14638187

8 0
2 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • A 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much worse
    15·1 answer
  • A 1451 kg car is traveling at 48.0 km/h. Compared to 48.0 km/h, what would be the fraction of energy the car would have if it we
    14·2 answers
  • A uniform rod of mass M and length L can pivot freely at one end. Initially, the rod is oriented vertically above the pivot, in
    7·1 answer
  • In addition to hot surface temperatures, which characteristic makes mercy different from earth
    6·1 answer
  • You and friend run up a fight of stairs that is 30 m high. Both of you reach the top in 12 seconds. Your weight is 570 N and you
    7·1 answer
  • A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The lift i
    8·1 answer
  • Hich of these best describes Earth’s mantle?
    11·1 answer
  • A ball is rolling across the floor at a constant speed. What will happen to the ball if it is exposed to an unbalanced force in
    14·2 answers
  • Which layer is the igneous rock type?
    7·2 answers
  • In order to relieve excessive pump pressure in an engine's internal oil system, most engines are equipped with a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!