The solubility of a substance in water is dependent on the temperature. Thus for
1 & 2: Temperature is the independent variable (the one that changes in the first place) and Solubility is a dependent variable (a variable that changes in response to changes in the independent variable.)
The graph: by convention you shall label the horizontal axis with the independent variable and the vertical axis with the dependent variable. For clarity's sake you shall use the finest scale possible that accommodates for all data provided for both axis. Plot the data points on the graph as if they are points on a cartesian plane.
My teacher made no detailed requirements on the phrasing on titles of solubility curve plots; however, like most other graphs in chemistry, the title shall specify the name of variables presented in this visualization. For instance, "the solubility of
under different temperatures" might do. You shall refer to your textbooks for such convention.
It is necessary to interpolate to find the solubility at a temperature not given in the table. Start by connecting all given data points with a smooth line; find the vertical line corresponding to temperature = 75 degree Celsius and determine the solubility at the intersection of the vertical line and the trend line. That point shall approximates the solubility of the salt at that temperature.
Oxygen and neon are both elements. Oxygen has 8 electrons and 8 protons. Neon has 10 electrons and 10 protons. Oxygen is also a non-metal element and Neon is a noble gas.
Ok I may be young but combine the two reactions to create a compund
Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient =
where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
=
= -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s