Possibly C or D i wanna say sorry if i’m wrong
Answer: 4.21×10⁻⁸
Explanation:
1) Assume a general equation for the ionization of the weak acid:
Let HA be the weak acid, then the ionization equation is:
HA ⇄ H⁺ + A⁻
2) Then, the expression for the ionization constant is:
Ka = [H⁺][A⁻] / [HA]
There, [H⁺] = [A⁻], and [HA] = 0.150 M (data given)
3) So, you need to determine [H⁺] which you do from the pH.
By definition, pH = - log [H⁺]
And from the data given pH = 4.1
⇒ 4.10 = - log [H⁺] ⇒ [H⁺] = antilog (- 4.10) = 7.94×10⁻⁵
4) Now you have all the values to calculate the expression for Ka:
ka = 7.94×10⁻⁵ × 7.94×10⁻⁵ / 0.150 = 4.21×10⁻⁸
The effect of an insoluble impurity, such as sand, on the observed melting point of a compound would be none. It will not depress or elevate the melting point of the compound. Instead, it would affect the reading if you are trying to determine the melting point of the compound. This is because you might be missing the actual melting point of the compound since you will be waiting for the whole sample to liquify. You would not be able to determine exactly that temperature because of the insoluble impurity would have a different melting point than that of the compound.
Answer:
q = 38,5 kJ
Explanation:
In its melting point, at 0°C, water is liquid. The boiling point of water is 100°C. It is possible to estimate the heat you required to raise the temperature of water from 0°C to 100°C using:
q = C×m×ΔT
Where C is specific heat of water (4,184J/g°C), m is mass of water (92,0g) and ΔT is change in temperature (100°C-0°C = 100°C)
Replacing:
q = 4,184J/g°C×92,0g×100°C
q = 38493 J, in kilojoules:
<em>q = 38,5 kJ</em>
<em></em>
I hope it helps!