In component form, the displacement vectors become
• 350 m [S] ==> (0, -350) m
• 400 m [E 20° N] ==> (400 cos(20°), 400 sin(20°)) m
(which I interpret to mean 20° north of east]
• 550 m [N 10° W] ==> (550 cos(100°), 550 sin(100°)) m
Then the student's total displacement is the sum of these:
(0 + 400 cos(20°) + 550 cos(100°), -350 + 400 sin(20°) + 550 sin(100°)) m
≈ (280.371, 328.452) m
which leaves the student a distance of about 431.8 m from their starting point in a direction of around arctan(328.452/280.371) ≈ 50° from the horizontal, i.e. approximately 431.8 m [E 50° N].
Answer:
8563732.58906 Pa
3992793.23326 Pa
5708.00923 J
Explanation:
V = Volume
N = Number of molecules = 
T = Temperature = 300 K
b = 
= Boltzmann constant = 
P = Pressure
We have the equation

The pressure is 8563732.58906 Pa
For isothermal expansion

The pressure is 3992793.23326 Pa
Work done is given by

The work done is 5708.00923 J
Answer:
The wavelength of the light is 555 nm.
Explanation:
according to Bragg's law..
n×λ = d×sin(θ)
n is the fringe number
λ is the wavelength of the light
d is the slit separation
θ is the angle the light makes with the normal at the fringe.
Answer:
D. 15 m/s downward
Explanation:
v = at + v₀
v = (-9.8 m/s²) (1.5 s) + (0 m/s)
v = -14.7 m/s
Rounded to two significant figures, the answer is D, 15 m/s downward.
Answer:
C
Explanation:
It has to travel 600 light years before we would be able to observe the explosion.