The force of earth's gravitational field is always directed downwards (towards the center of the earth. When the ball is thrown up, it is going against the earth's gravitational field and so, the earth's gravitational force pulls it back down, accelerating it downwards.
Now I can actually edit my answer directly: I'm fairly sure I've got this wrong, and my mind has gone blank for how to do it, if someone could delete this that would be great and I'll think about it and see if I can figure it out!
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.
<h3>Why an egg thrown at a concrete wall will break?</h3>
An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not because the momentum and acceleration increases when the egg is thrown downward due to gravity but when we throw an egg in the vertical direction, they move against gravity so the momentum and acceleration decreases.
So we can conclude that an egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
in this video waves are coming up for the BOTTOM to the top of the sandbar