Answer:
Membrane potential
Explanation:
Membrane potential is describes the difference in electrical charge across a membrane.
The difference in potential between exterior and interior of the biological cell is known as Membrane potential.Generally it is denoted by millivolts like mV and varies from -80 V to -40 V.
So the answer is Membrane potential
Answer: The average velocity is -0.965m/s
Explanation: The first step is to calculate the two velocities is both directions. A velocity is a distance per unit time.
V=d/ t
=-5.7/2.1
=-2.7m/s
For the other direction the velocity is
V=7.3/9.5
=0.77m/s
The average velocity the add the velocities and divide them by 2.
V=-2.7+0.77/2
V= 0.965m/s
Answer:
c)
V_local = -x/t^2
V_convec = x/t^2
d)
a = V_local + V_convec = 0
e) When a particle moves towards postive x direction its convective velocity increases, but at the same time the local velocity deacreases (at the same rate) when time increases
Explanation:
Hi!
You can see plots for a) and b) attached on this document
c)
The local acceleration is just teh aprtial derivative of the velocity with respect to t:
And the convective acceleration is given by the product of the velocity times the gradient of the velocity, that is:
d)
Since the acceleration of any fluid particle is the sum of the local and convective accelerations, we can easily see that it is equal to zero, since they are equal but with opposit sign
e)
This is because of teh particular form of the velocity. A particle will move towards areas of higher velocities (convectice acceleration), but as time increases, the velocity is also decreasing (local acceleration), and the sum of these quantities adds up to zero
<span>From an area of higher conentration to an area of lower concentration which is B. my friend. Hoped i helped.
</span>
The formula F=velocity/wavelength
F=24/2
F=12 Hz