1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
3 years ago
5

A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule

. (a) What is the change in speed of the space capsule? (b) If the push lasts 0.600 s, what is the average force exerted by each on the other? As the reference frame, use the position of the capsule before the push. (c) What is the kinetic energy of each after the push?
Physics
1 answer:
ryzh [129]3 years ago
3 0

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

You might be interested in
An upright spring with a 96g mass on it is compressed 2 cm. When
Alexeev081 [22]

Answer:

I only know answer A and it's 2825.28 N/m, with rounding it's 2825.5

Explanation:

Use the m*g*h=1/2*k*x^2 equation

96*9.81*60=1/2*k*2^2

5650.56=2k

5650.56/2=2825.28N/m

8 0
3 years ago
Determine the mechanical energy of this object: 1-kg ball rolls on the ground at 2 m/s
Fiesta28 [93]
The potential energy would be zero. Only kinetic energy is present in this case. To find out what the answer is we do the equation: mv^2/2 soo...

KE =mv^2/2 
KE= 1(2^2)/2 which the answer will come up by 2 Joules.
5 0
3 years ago
The dial of a scale looks like this: 00.0kg. A physicist placed a spring on it. The dial read 00.6kg. He then placed a metal cha
saveliy_v [14]

Answer:

d. The scale's resolution is too low to read the change in mass

Explanation:

If we want to find the change in energy of the spring, we will have to use the Hooke's Law. Hooke's Law states that:

F = kx

since,

w = Fd

dw = Fdx

integrating and using value of F, we get:

ΔE = (0.5)kx²

where,

ΔE = Energy added to spring

k = spring constant

x = displacement

The spring constant is typically in range of 4900 to 29400 N/m.

So if we take the extreme case of 29400 N/m and lets say we assume an unusually, extreme case of 1 m compression, we get the value of energy added to be:

ΔE = (0.5)(29400 N/m)(1 m)²

ΔE = 1.47 x 10⁴ J

Now, if we convert this energy to mass from Einstein's equation, we get:

ΔE = Δmc²

Δm = ΔE/c²

Δm = (1.47 x 10⁴ J)/(3 x 10⁸ m/s)²

<u>Δm =  4.9 x 10⁻¹³ kg</u>

As, you can see from the answer that even for the most extreme cases the value of mass associated with the additional energy is of very low magnitude.

Since, the scale only gives the mass value upto 1 decimal place.

Thus, it can not determine such a small change. So, the correct option is:

<u>d. The scale's resolution is too low to read the change in mass</u>

8 0
3 years ago
The lubrication of bone joints is a subject of ongoing medical research. Two bones connected at a joint do not touch. The bones
maks197457 [2]

The question is incomplete. The complete question is :

To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.

Draw vectors indicating the normal force n⃗  (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.

Assume that the weight of the femur is negligible compared to the applied downward force.

Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded

Solution :

The normal force represented by N is equal to the downward force, $F_d$ which is equal in magnitude but it is opposite in direction.

Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.  

5 0
3 years ago
Under which of the following conditions is Lactic acid fermentation most likely occur?
adell [148]
Lactic acid is caused by using atp without oxygen being avaliable
5 0
3 years ago
Other questions:
  • Velocity is distance traveled over?​
    14·1 answer
  • A generator's maximum output is 220 V. What is the rms potential difference?
    15·1 answer
  • Applying the Law of Conservation of Momentum
    13·1 answer
  • Why is the chemical formula magnesium sulfide written as MgS and NOT Mg2S2?
    11·2 answers
  • Laws are statements that explain an observation without trying to explain why or how it occurs. Often times they are mathematica
    7·1 answer
  • Please answer the question and show your working clearly.
    10·1 answer
  • Two current-carrying wires are exactly parallel to one another and both carry 2.5A of current. The two wires are separated by a
    15·1 answer
  • 2. A boy kicks the football of mass 500 g which is initially at rest. It starts moving with a
    7·2 answers
  • Kinetic energy is the energy of motion and increases with the speed of the wave.
    9·1 answer
  • A gun can fire a bullet at 540 m/s. If the gun is aimed at an angle of 55o above the horizontal and fired, what will be the hori
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!