Answer:
0.07°C
Explanation:
<u>solution:</u>
the speed of a sound in water is<u>:</u>
v(T)=1480+4(T-4°C)
<u>at 4°C the travel time is:</u>
t(4◦C) = (
7600 × 103 m
)
/ (1480 m/s) = 5202.7 s
<u>5°C, the travel time is:</u>
t(5◦C) = (
7600 × 103 m
)
/ (1484 m/s) = 5188.7 s
<u>one degree C corresponds to a ∆t of 14 s so temperature difference is:</u>
ΔT=1 s/14 s=0.07◦C
.........Nucler fission.... .
The answer is <span>A.)the greenhouse effect
</span>
During an exothermic reaction; light and heat are released into the environment.
An exothermic reaction is one in which heat is released to the environment. This heat can be physically observed sometimes like in an a combustion reaction.
In an exothermic reaction, the enthalpy of the reactants is greater than the enthalpy of the products.
This heat lost is sometimes felt as the hotness of the vessel in which the reaction has taken place.
In conclusion, light and heat are released into the environment in an exothermic reaction.
Learn more: brainly.com/question/4345448
Answer:
= 7.07 m
Explanation:
The Tarzan reaches bottom of swing after descending 2.5 m,
change in his potential energy equals his kinetic energy at bottom of swing
m g h = (1/2) m v² ,
hence speed v of Tarzan at bottom of swing is given as
v = ( 2 g h )1/2
= ( 2 × 9.8 × 2.5 )1/2
= 7 m/s
At the bottom of swing, if the vine breaks, then he is moving with horizontal velocity 7 m/s in gravitational field.
If vertical distance from ground to bottom of swing is 5 m, then time t for Tarzan to reach ground is given by
S = (1/2)g t2 or t = (2S/g)1/2
= ( 2 × 5 / 9.8 )1/2
= 1.01 s
Horizontal distance traveled by Tarzan = 1.01 × 7
= 7.07 m