Dropping a nuke on another country.
Answer:
calculate the cars acceleration usingv=u+at
Explanation:
m/s. After 5 s the car reaches the bottome of the hill. Its speed at the bottom of the ... accelerating left a rownie. 10. A cart slows down while moving away from the ... does it need to accelerate to a velocity of 20 m/s
Answer:
volt, unit of electrical potential, potential difference and electromotive force in the metre–kilogram–second system (SI); it is equal to the difference in potential between two points in a conductor carrying one ampere current when the power dissipated between the points is one watt.
The volts (symbol V) measure the different potential energy that exists between one point and the other. The volts are thus named in honor of Alessandro Volta, the inventor of the battery.
Batteries move anions (negatively charged things) and cations (positively charged things) to opposite terminals, creating a voltage. Voltage is better expressed as electric potential.
Voltage is the electrical force that causes free electrons to move from one atom to another. Just as water needs some pressure to force it through a pipe, electrical current needs some force to make it flow. "Volts" is the measure of "electrical pressure" that causes current flow.
It shows that the airplane covers equal distance in equal time interval, that's it has a straight line from the origin.
The plane is moving at uniform speed.
This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!