Answer:
a. X is the number of adults in America that need to be surveyed until finding the first one that will watch the Super Bowl.
b. X can take any integer that is greater than or equal to 1.
.
c.
.
d.
.
e.
.
f.
.
Step-by-step explanation:
<h3>a.</h3>
In this setting, finding an adult in America that will watch the Super Bowl is a success. The question assumes that the chance of success is constant for each trial. The question is interested in the number of trials before the first success. Let X be the number of adults in America that needs to be surveyed until finding the first one who will watch the Super Bowl.
<h3>b.</h3>
It takes at least one trial to find the first success. However, there's rare opportunity that it might take infinitely many trials. Thus, X may take any integer value that is greater than or equal to one. In other words, X can be any positive integer:
.
<h3>c.</h3>
There are two discrete distributions that may model X:
- The geometric distribution. A geometric random variable measures the number of trials before the first success. This distribution takes only one parameter: the chance of success on each trial.
- The negative binomial distribution. A negative binomial random variable measures the number of trials before the r-th success. This distribution takes two parameters: the number of successes
and the chance of success on each trial
.
(note that
) is equivalent to
. However, in this question the distribution of
takes two parameters, which implies that
shall follow the negative binomial distribution rather than the geometric distribution. The probability of success on each trial is
.
.
<h3>d.</h3>
The expected value of a negative binomial random variable is equal to the number of required successes over the chance of success on each trial. In other words,
.
<h3>e.</h3>
.
Some calculators do not come with support for the negative binomial distribution. There's a walkaround for that as long as the calculator supports the binomial distribution. The r-th success occurs on the n-th trial translates to (r-1) successes on the first (n-1) trials, plus another success on the n-th trial. Find the chance of (r-1) successes in the first (n-1) trials and multiply that with the chance of success on the n-th trial.
<h3>f.</h3>
.
97 to 100, or 97 percent
<span />
Answer:
111111111111111111
Step-by-step explanation:
Answer:
Semiconductors are somewhere in-between conductors and insulators. This means that they are specific when it comes to conducting electricity meaning that their conduction of electricity varies based on their condition at the time.
For instance, they can conduct electricity when heated.
Properties:
1. Perfect insulator at Absolute Zero.
As mentioned above, semi conductors are better at conducting electricity when they are heated. At Absolute zero - the lowest temperature possible - therefore, these materials would conduct absolutely no electricity thereby making them perfect insulators.
2. More resistance than Conductors but less than Insulators
As mentioned above, they have properties in-between those of insulators and conductors. One of those is their resistance. They can resist more than conductors but less than insulators.
Width is 10 and Length is 18
18-10=8
18+18+10+10= 56