2.a it should have 20 dollars in it
2.b it should take 5 days
i don't know the number 3
Taxi A
1mile £3.50+£1.75=£5.25
Taxi B
1mile £1.25+£2.00=£3.25
Taxi A
2miles £3.50+£3.50=£7.00
Taxi B
2miles £1.25+£4.00=£5.25
Taxi A
3miles £3.50+£5.25=£8.75
Taxi B
3miles £1.25+£6.00=£7.25
Taxi A
4miles £3.50+£7.00=£10.50
Taxi B
4miles £1.25+£8.00=£9.25
Taxi A
5miles £3.50+£8.75=£12.25
Taxi B
5miles £1.25+£10.00=£11.25
Taxi A
6miles £3.50+£10.50=£14.00
Taxi B
6miles £1.25+£12.00=£13.25
Taxi A
7miles £3.50+£12.25=£15.75
Taxi B
7miles £1.25+£14.00=£15.25
Taxi A
8miles £3.50+£14.00=£17.50
Taxi B
8miles £1.25+£16.00=£17.25
Taxi A
9miles £3.50+£15.75=£19.25 (the same)
Taxi B
9miles £1.25+£18.00=£19.25 (the same)
^^^
They would have to drive 9 miles for the taxi to cost the same.
Hope this helped, this is the longest way to work it out but also the simplest.
Define
![{x} = \left[\begin{array}{ccc}x_{1}\\x_{2}\end{array}\right]](https://tex.z-dn.net/?f=%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%5C%5Cx_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20)
Then
x₁ = cos(t) x₁(0) + sin(t) x₂(0)
x₂ = -sin(t) x₁(0) + cos(t) x₂(0)
Differentiate to obtain
x₁' = -sin(t) x₁(0) + cos(t) x₂(0)
x₂' = -cos(t) x₁(0) - sin(t) x₂(0)
That is,
![\dot{x} = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right] x(0)](https://tex.z-dn.net/?f=%5Cdot%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20x%280%29)
Note that
![\left[\begin{array}{ccc}0&1\\-1&09\end{array}\right] \left[\begin{array}{ccc}cos(t)&sin(t)\\-sin(t)&cos(t)\end{array}\right] = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%2609%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%28t%29%26sin%28t%29%5C%5C-sin%28t%29%26cos%28t%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20)
Therefore
Sheeeeesh your school is hard djdjxjdjwnnwzhcb b129(858192029358((8
Hello! She earns a salary of $2,100, which is the fixed amount each month, plus 5% commission on her sales. To find out the amount of sales that will help her reach her goal, set up the inequality like this:
2,100 + 0.05x ≥ 2,400
We set it up like this, because $2,100 is the one-time price per month, and she earns 5% of her sales as commission. Plus, the key words "at least" means the inequality sign is greater than or equal to (≥)
How to solve this:
First off, subtract 2,100 from both sides, when you do, you get 0.05x ≥ 300. Now, divide each side by 0.05 to isolate the "x". 300/0.05 is 6,000. Let's check this. 6,000 * 5% (0.05) is 300. There. x = 6,000. Liz will need to sell $6,000 worth of items this month in order to meet her goal.