It's pretty easy to balance equations! Basically you want to make sure that the number of each compound is equal on both sides of the arrow.
For example number one is
Fe + H2SO4 -> Fe2(SO4)3 + H2
A 3 in front of H2SO4 because there's a subscript of 3 on the right side.
Then a 3 in front of H2 because of the previous step.
Then add a 2 in front of Fe because of the 2 subscript in Fe2(SO4)3
Then add a 1 in front of Fe2(SO4)3 because you already have an equal number of each element.
<u>2</u>Fe + <u>3</u>H2SO4 -> <u>1</u>Fe2(SO4)3 + <u>3</u>H2
I hope this explanation helps! You should really do your homework because practice is everything when it comes to chemistry. You'll need to know how to do it for exams.
False, it states that matter can be nether created nor destroyed
Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
Answer:
1) positive
2) carbocation
3) most stable
4) faster
Explanation:
A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.
The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.
Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.
Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.