Answer:
emulsion
Explanation:
An emulsion is a mixture of two or more liquids that are normally immiscible. Emulsions are part of a more general class of two-phase systems of matter called colloids.
The pH of the monoprotic weak acid is 2.79.
<h3>What are weak acids?</h3>
The weak acids are the acids that do not fully dissociate into ions in the solution. Strong acids fully dissociate into ions.
The chemical reaction is HA(aq) ⇄ A⁻(aq) + H⁺(aq).
c (monoprotic acid) = 0.33 M.
Ka = 1.2·10⁻⁶
[A⁻] = [H⁺] = x
[HA] = 0.33 M - x
Ka = [A⁻]·[H⁺] / [HA]
2. 6 × 10⁻⁶ = x² / (0.33 M - x)
Solve quadratic equation: [H⁺] = 0.000524 M.
pH = -log[H⁺]
pH = -log(0.000524 M)
pH = 2.79
Thus, the pH of the monoprotic weak acid is 2.79
To learn more about weak acids, refer to the below link:
brainly.com/question/13032224
#SPJ4
Evidence could be gathered in the future that contradicts original theories. <span>Phenomena cannot be proven by conclusive evidence in science because, as of now, the evidence isn't conclusive. It is speculation. Just as a phenomena cannot be proven, it also cannot be disproven. </span>
Answer:
The answer is 6.25g.
Explanation:
First create your balanced equation. This will give you the stoich ratios needed to answer the question:
2C8H18 + 25O2 → 16CO2 + 18H2O
Remember, we need to work in terms of NUMBERS, but the question gives us MASS. Therefore the next step is to convert the mass of O2 into moles of O2 by dividing by the molar mass:
7.72 g / 16 g/mol = 0.482 mol
Now we can use the stoich ratio from the equation to determine how many moles of H2O are produced:
x mol H2O / 0.482 mol O2 = 18 H2O / 25 O2
x = 0.347 mol H2O
The question wants the mass of water, so convert moles back into mass by multiplying by the molar mass of water:
0.347 mol x 18 g/mol = 6.25g
Answer:
The active ingredients in baking soda (NaHCO3) are
and 
when Baking soda reacts with Acetic acid
Molecular equation
NaHCO3(aq) + CH3COOH(aq) → Na(CH3COO)(aq) + CO2(g) +H2O(l)
Ionic equation
→ 
as
is present on both sides so it will cancel out and the net ionic equation will be
→ 